差分进化算法的交叉算子
时间: 2024-06-08 13:08:09 浏览: 159
差分进化算法中的交叉算子是用于生成新个体的操作。常见的交叉算子包括以下几种:
1. 二进制交叉(Binary Crossover):将两个父个体的二进制编码进行位操作,可以通过随机选择交叉点来生成新个体。
2. 数值交叉(Real-Valued Crossover):对于实数编码的差分进化算法,可以通过对父个体进行加权平均或随机线性组合等方式来生成新个体。
3. 混合交叉(Blended Crossover):这是一种结合了二进制和数值交叉的方法,通过对二进制编码和实数编码同时进行交叉来生成新个体。
4. 高斯交叉(Gaussian Crossover):对于实数编码的差分进化算法,可以通过对父个体进行高斯变异操作,然后按照一定的比例与原父个体进行加权平均来生成新个体。
需要注意的是,不同的差分进化算法可能采用不同的交叉算子,具体选择哪种方式要根据问题的特点和实际需求来确定。
相关问题
混合反向学习和正交叉算子的差分进化算法matlab
混合反向学习和正交叉算子的差分进化算法是一种较新的优化算法,可以用于解决多种优化问题。下面是一个简单的 Matlab 实现:
```matlab
function [best_sol, best_fitness] = HJADE(fitness_func, dim, bounds, max_evals)
% HJADE: Hybrid JADE algorithm with orthogonal crossover and backpropagation
% Input:
% - fitness_func: function handle of the fitness function
% - dim: number of dimensions
% - bounds: bounds of the decision variables, a dim x 2 matrix
% - max_evals: maximum number of function evaluations
% Output:
% - best_sol: best solution found
% - best_fitness: fitness value of the best solution found
% Initialize parameters
pop_size = 20 * dim; % population size
F = 0.5; % scaling factor
CR = 0.9; % crossover rate
p = 0.1; % orthogonal crossover probability
H = 5; % number of hidden neurons
eta = 0.1; % learning rate
beta = 0.9; % momentum factor
eps = 1e-8; % numerical stability constant
% Initialize population
pop = repmat(bounds(:, 1)', pop_size, 1) + rand(pop_size, dim) .* repmat(bounds(:, 2)' - bounds(:, 1)', pop_size, 1);
fitness = arrayfun(fitness_func, pop);
evals = pop_size;
% Initialize neural network weights
w1 = rand(dim, H) * 2 - 1;
b1 = rand(1, H) * 2 - 1;
w2 = rand(H, 1) * 2 - 1;
b2 = rand(1, 1) * 2 - 1;
v1 = zeros(dim, H);
v2 = zeros(H, 1);
% Main loop
while evals < max_evals
% Mutation
idx = randperm(pop_size, 3);
x_r1 = pop(idx(1), :);
x_r2 = pop(idx(2), :);
x_r3 = pop(idx(3), :);
v = pop + F * (x_r1 - pop) + F * (x_r2 - x_r3);
v = min(max(v, bounds(:, 1)'), bounds(:, 2)');
% Crossover
u = zeros(size(pop));
for i = 1:size(pop, 1)
if rand < CR
% Orthogonal crossover
v1 = w1' * v(i, :)' + b1';
v2 = w2' * v1 + b2';
grad = w2 * (v2 - fitness(i)) * v1' * (1 - v1.^2);
w1 = w1 - eta * (v(i, :)' * grad' + beta * v1 * v1' * w1);
b1 = b1 - eta * (grad' + beta * v1 * b1');
w2 = w2 - eta * (v1 * (v2 - fitness(i)));
b2 = b2 - eta * (v2 - fitness(i));
w1 = w1 ./ norm(w1);
w2 = w2 ./ norm(w2);
if rand < p
u(i, :) = v(i, :) + randn(1, dim) .* (bounds(:, 2)' - bounds(:, 1)');
else
u(i, :) = v(i, :);
end
else
u(i, :) = pop(i, :);
end
end
% Selection
new_fitness = arrayfun(fitness_func, u);
evals = evals + pop_size;
mask = new_fitness < fitness;
pop(mask, :) = u(mask, :);
fitness(mask) = new_fitness(mask);
% Update best solution
[best_fitness, best_idx] = min(fitness);
best_sol = pop(best_idx, :);
end
```
其中,fitness_func 是待优化的目标函数,dim 是决策变量的维度,bounds 是决策变量的上下界,max_evals 是最大的函数评估次数。该算法采用了混合反向学习和正交叉算子的差分进化算法,其中反向学习用于更新神经网络的权重和偏置,正交叉算子用于交叉生成新的个体。在每次迭代中,首先根据当前种群计算适应度,然后进行选择和交叉操作,最后更新神经网络和最优解。
融合混沌算子和反向学习的差分进化算法matlab
以下是一个简单的 MATLAB 代码示例,演示了如何实现融合混沌算子和反向学习的差分进化算法 RL-CODE:
```matlab
function [best_solution, best_fitness] = RL_CODE(fitness_func, dim, lb, ub, max_iter)
% fitness_func: 适应度函数句柄
% dim: 问题维度
% lb: 下限
% ub: 上限
% max_iter: 最大迭代次数
% 初始化算法参数
CR = 0.5; % 交叉概率
F = 0.5; % 缩放因子
NP = 50; % 种群规模
record = zeros(max_iter, 1); % 记录每一代的最优适应度值
% 初始化种群
pop = lb + (ub - lb) * rand(NP, dim);
fitness = feval(fitness_func, pop);
best_solution = pop(1, :);
best_fitness = fitness(1);
% 初始化混沌序列
x = rand(1);
y = rand(1);
z = rand(1);
for i = 1 : 1000
x_next = y - z;
y_next = x + 0.2 * y;
z_next = 0.2 + z * (x - 10);
x = x_next;
y = y_next;
z = z_next;
end
% 迭代优化
for iter = 1 : max_iter
% 记录每一代的最优适应度值
record(iter) = best_fitness;
% 更新控制参数
if iter > 1
CR = CR + 0.02 * (rand(1) - 0.5);
F = F + 0.02 * (rand(1) - 0.5);
CR = max(0, min(CR, 1));
F = max(0, min(F, 1));
end
% 反向学习机制
if iter > 20 && mod(iter, 10) == 0
[idx, sorted_fitness] = sort(fitness, 'ascend');
pop = pop(sorted_fitness, :);
fitness = fitness(sorted_fitness);
for i = 1 : NP
j = randi([1 NP]);
while j == i
j = randi([1 NP]);
end
if fitness(i) < fitness(j)
pop(i, :) = pop(i, :) + rand(1, dim) .* (pop(j, :) - pop(i, :));
end
end
fitness = feval(fitness_func, pop);
[best_fitness, best_idx] = min(fitness);
best_solution = pop(best_idx, :);
end
% 差分进化算法
for i = 1 : NP
% 选择3个不同的个体
idxs = randperm(NP, 3);
while idxs(1) == i
idxs = randperm(NP, 3);
end
% 生成新个体
v = pop(idxs(1), :) + F * (pop(idxs(2), :) - pop(idxs(3), :));
v = max(v, lb);
v = min(v, ub);
% 混沌序列变换
x = mod(x * 2^32, 1);
y = mod(y * 2^32, 1);
z = mod(z * 2^32, 1);
r = mod(x + y + z, 1);
if rand(1) < r
j = randi([1 dim]);
v(j) = v(j) + randn(1);
end
% 交叉变异
idx = randi([1 dim]);
for j = 1 : dim
if rand(1) < CR || j == idx
pop_new(i, j) = v(j);
else
pop_new(i, j) = pop(i, j);
end
end
end
% 更新种群
fitness_new = feval(fitness_func, pop_new);
for i = 1 : NP
if fitness_new(i) < fitness(i)
pop(i, :) = pop_new(i, :);
fitness(i) = fitness_new(i);
end
if fitness(i) < best_fitness
best_fitness = fitness(i);
best_solution = pop(i, :);
end
end
end
% 返回最优解和最优适应度值
end
```
需要注意的是,上述代码仅为示例,实际应用中可能需要对算法参数进行更细致的调整,以获得更好的优化效果。
阅读全文