z=(8+6i)(4+3i)/(8+6i)+(4+3i),把上述抽象数据举例利用Dev-c++语言进行代码输出
时间: 2024-09-13 07:10:17 浏览: 43
Notify_fast6i3_labview_
在C++中,由于复数(complex numbers)不是内置的数据类型,我们需要自定义一个`Complex`类来处理复数运算。对于给定的表达式 `z = (8+6i) * (4+3i) / (8+6i) + (4+3i)`,我们可以创建一个简单的实现来计算它。假设已经有一个名为`Complex`的简单复数类,代码会类似下面这样:
```cpp
#include <iostream>
using namespace std;
class Complex {
public:
double real;
double imag;
// 构造函数
Complex(double r = 0, double i = 0) : real(r), imag(i) {}
// 复数乘法
Complex operator*(const Complex& other) {
return Complex(real * other.real - imag * other.imag,
real * other.imag + imag * other.real);
}
// 复数除法
Complex operator/(const Complex& other) const {
double denominator = other.real * other.real + other.imag * other.imag;
return Complex((real * other.real + imag * other.imag) / denominator,
(imag * other.real - real * other.imag) / denominator);
}
};
int main() {
Complex num1(8, 6); // (8+6i)
Complex num2(4, 3); // (4+3i)
// 计算乘法
Complex product = num1 * num2;
cout << "Product: (" << product.real << ", " << product.imag << ")\n";
// 除以num1,注意这里num1不会分母为零,因为分母是一个非零复数
Complex quotient = product / num1;
cout << "Quotient (after removing complex division): (" << quotient.real << ", " << quotient.imag << ")\n";
// 后面两个加法操作不需要特殊处理,直接相加即可
Complex sum = quotient + num2; // z = quotient + (4+3i)
cout << "Sum: (" << sum.real << ", " << sum.imag << ")\n";
return 0;
}
```
运行这段代码后,你会看到结果的实部和虚部分别是什么。
阅读全文