提供一个DQN的MATLAB代码
时间: 2024-03-28 20:16:37 浏览: 216
基于DQN实现机器人路径规划附matlab代码.zip
5星 · 资源好评率100%
以下是一个简单的DQN(Deep Q-Network)的MATLAB实现。这个代码使用了经典的CartPole环境作为示例。在这个环境中,一个杆子被放在一个小车上,目标是通过左右移动小车来保持杆子直立。我们用一个神经网络来估计每个动作的Q值,并使用经验回放和目标网络来训练网络。
注意:这个代码仅供参考,可能需要根据实际情况进行修改和优化。
```matlab
% Load the CartPole environment
env = rlPredefinedEnv("CartPole-Discrete");
% Define the Q-network
stateSize = numel(env.reset);
numActions = numel(env.actioninfo);
numHiddenUnits = 16;
layers = [ ...
imageInputLayer([1 1 stateSize],'Normalization','none','Name','observation')
fullyConnectedLayer(numHiddenUnits,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(numHiddenUnits,'Name','fc2')
reluLayer('Name','relu2')
fullyConnectedLayer(numActions,'Name','output')];
lgraph = layerGraph(layers);
% Define the DQN agent
agentOptions = rlDQNAgentOptions( ...
'SampleTime',env.Ts, ...
'TargetUpdateFrequency',100, ...
'ExperienceBufferLength',100000, ...
'DiscountFactor',0.99, ...
'Epsilon',1, ...
'EpsilonDecay',1e-6, ...
'MiniBatchSize',64);
dqn = rlDQNAgent(lgraph,agentOptions);
% Train the agent
maxEpisodes = 1000;
maxSteps = ceil(env.Tf/env.Ts);
trainOpts = rlTrainingOptions( ...
'MaxEpisodes',maxEpisodes, ...
'MaxStepsPerEpisode',maxSteps, ...
'Verbose',false, ...
'Plots','training-progress');
trainingStats = train(dqn,env,trainOpts);
```
阅读全文