sphere函数差分进化算法
时间: 2024-05-15 10:13:40 浏览: 133
Sphere函数是一个常用的基准测试函数,其公式为:
f(x) = x1^2 + x2^2 + ... + xn^2
其中x为n维向量。差分进化算法(Differential Evolution, DE)是一种常用的优化算法,它通过对候选解进行向量差分来产生新的解,并根据一定的策略选择更优的解作为下一代种群的基础。
下面是使用差分进化算法求解Sphere函数的Python代码示例:
```python
import numpy as np
def sphere(x):
return np.sum(np.square(x))
def de(fobj, bounds, mut=0.8, crossp=0.7, popsize=20, its=1000):
dimensions = len(bounds)
pop = np.random.rand(popsize, dimensions)
min_b, max_b = np.asarray(bounds).T
diff = np.fabs(min_b - max_b)
pop_denorm = min_b + pop * diff
fitness = np.asarray([fobj(ind) for ind in pop_denorm])
best_idx = np.argmin(fitness)
best = pop_denorm[best_idx]
for i in range(its):
for j in range(popsize):
idxs = [idx for idx in range(popsize) if idx != j]
a, b, c = pop[np.random.choice(idxs, 3, replace=False)]
mutant = np.clip(a + mut * (b - c), 0, 1)
cross_points = np.random.rand(dimensions) < crossp
if not np.any(cross_points):
cross_points[np.random.randint(0, dimensions)] = True
trial = np.where(cross_points, mutant, pop[j])
trial_denorm = min_b + trial * diff
f = fobj(trial_denorm)
if f < fitness[j]:
fitness[j] = f
pop[j] = trial
if f < fitness[best_idx]:
best_idx = j
best = trial_denorm
yield best, fitness[best_idx]
bounds = [(0, 10)] * 10 # 10维变量范围在0到10之间
for solution, fitness in de(sphere, bounds):
print(solution, fitness)
```
代码中使用了生成随机种群、向量差分、选择优秀解等经典的差分进化算法操作,通过迭代不断优化种群,最终得到了Sphere函数的最优解。
阅读全文