写出torch.optim.lr_scheduler.ReduceLROnPlateau的数学公式
时间: 2024-05-30 08:09:31 浏览: 282
torch.optim.lr_scheduler.ReduceLROnPlateau是一种基于验证集结果动态调整学习率的方法。以下是它的数学公式:
1. 定义:
lr_{i+1} = f(lr_i)
其中,lr_i表示第i个epoch的学习率,lr_{i+1}表示第i+1个epoch的学习率,f表示学习率调整函数。
2. 学习率调整函数:
当验证集上的指标不再变化(或变差)时,将学习率除以factor降低。
f(lr_i) = lr_i / factor
当验证集上的指标连续patience次不再变化(或变差)时,将学习率除以factor降低。
f(lr_i) = lr_i / factor
其中,patience表示需要等待的epoch数,factor表示调整系数,通常为0.1。
相关问题
torch.optim.lr_scheduler.ReduceLROnPlateau
torch.optim.lr_scheduler.ReduceLROnPlateau是PyTorch的一个学习率调整器。它可以监测一个指标,比如验证集上的准确率或者损失,如果这个指标在一定的时间内不再改善,那么它会自动地将学习率降低一个因子,以便更好地训练模型。
该学习率调度器的使用很简单,只需要在训练过程中添加以下代码即可:
```python
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True)
for epoch in range(num_epochs):
# 训练代码
# ...
# 验证代码
val_loss = validate(...)
scheduler.step(val_loss)
```
其中,optimizer是你定义的优化器,mode是衡量指标的方式,比如'min'表示指标越小越好,'max'表示指标越大越好;factor是衰减因子,即每次降低学习率的倍数;patience是指多少个epoch内没有提升时就触发学习率调整;verbose表示是否打印调整信息。
注意,ReduceLROnPlateau只能在optimizer.step()之后进行调用,而不能在optimizer.zero_grad()之后进行调用。
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau
The `scheduler` variable is an instance of the `ReduceLROnPlateau` class from the PyTorch `optim.lr_scheduler` module. This class implements a learning rate scheduler that monitors a specified metric and reduces the learning rate if the metric does not improve for a certain number of epochs.
The `ReduceLROnPlateau` scheduler takes the following parameters:
- `optimizer`: The optimizer that is being used to train the model.
- `mode`: Specifies whether the metric being monitored should be minimized or maximized. Possible values are `'min'`, `'max'`, or `'auto'` (which infers the mode based on the metric name).
- `factor`: The factor by which the learning rate is reduced. For example, if `factor=0.1`, the learning rate will be reduced by a factor of 0.1 (i.e., the new learning rate will be 0.1 times the old learning rate).
- `patience`: The number of epochs to wait before reducing the learning rate if the metric does not improve.
- `verbose`: Specifies whether to print information about the learning rate changes.
- `threshold`: The threshold for measuring the new optimum, to only focus on significant changes.
- `threshold_mode`: Specifies whether the threshold is relative (`'rel'`) or absolute (`'abs'`).
The `scheduler.step()` method is called at the end of each epoch to update the learning rate based on the monitored metric.
阅读全文