写一个mfc的sutherland-hodgman算法
时间: 2024-03-18 16:45:10 浏览: 108
以下是一个简单的 MFC 实现 Sutherland-Hodgman 算法的代码:
```cpp
// 定义多边形的点数
#define POLYGON_SIZE 4
// 定义两个点的结构体
struct Point {
float x;
float y;
};
// 定义多边形的结构体
struct Polygon {
Point points[POLYGON_SIZE];
};
// Sutherland-Hodgman 算法
Polygon clipPolygon(Polygon subjectPolygon, Polygon clipPolygon) {
Polygon outputPolygon = subjectPolygon;
// 依次遍历裁剪多边形的边
for (int i = 0; i < POLYGON_SIZE; i++) {
Point clipStart = clipPolygon.points[i];
Point clipEnd = clipPolygon.points[(i + 1) % POLYGON_SIZE];
Polygon inputPolygon = outputPolygon;
outputPolygon = {};
// 依次遍历多边形的边
for (int j = 0; j < POLYGON_SIZE; j++) {
Point subjectStart = inputPolygon.points[j];
Point subjectEnd = inputPolygon.points[(j + 1) % POLYGON_SIZE];
float startLocation = (clipEnd.x - clipStart.x) * (subjectStart.y - clipStart.y) - (clipEnd.y - clipStart.y) * (subjectStart.x - clipStart.x);
float endLocation = (clipEnd.x - clipStart.x) * (subjectEnd.y - clipStart.y) - (clipEnd.y - clipStart.y) * (subjectEnd.x - clipStart.x);
// 判断起点位置
if (startLocation >= 0) {
outputPolygon.points[outputPolygonSize++] = subjectStart;
}
// 判断起点和终点位置
if (startLocation * endLocation < 0) {
float intersectionX = (clipEnd.x - clipStart.x) * (subjectStart.y - clipStart.y) - (clipEnd.y - clipStart.y) * (subjectStart.x - clipStart.x);
float intersectionY = (clipEnd.y - clipStart.y) * (subjectEnd.x - clipStart.x) - (clipEnd.x - clipStart.x) * (subjectEnd.y - clipStart.y);
intersectionX /= (subjectEnd.y - subjectStart.y) * (clipEnd.x - clipStart.x) - (subjectEnd.x - subjectStart.x) * (clipEnd.y - clipStart.y);
intersectionY /= (subjectEnd.y - subjectStart.y) * (clipEnd.x - clipStart.x) - (subjectEnd.x - subjectStart.x) * (clipEnd.y - clipStart.y);
Point intersection = { intersectionX, intersectionY };
outputPolygon.points[outputPolygonSize++] = intersection;
}
}
}
return outputPolygon;
}
// 绘制多边形
void drawPolygon(CDC* pDC, Polygon polygon) {
CPoint points[POLYGON_SIZE];
for (int i = 0; i < POLYGON_SIZE; i++) {
points[i] = CPoint(polygon.points[i].x, polygon.points[i].y);
}
pDC->Polygon(points, POLYGON_SIZE);
}
// 绘制裁剪框
void drawClipRectangle(CDC* pDC, Polygon clipPolygon) {
CPoint points[POLYGON_SIZE];
for (int i = 0; i < POLYGON_SIZE; i++) {
points[i] = CPoint(clipPolygon.points[i].x, clipPolygon.points[i].y);
}
pDC->Polyline(points, POLYGON_SIZE);
}
// 绘制函数
void CMyView::OnDraw(CDC* pDC)
{
CMyDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
// 定义多边形和裁剪框
Polygon subjectPolygon = { { { 100, 100 }, { 200, 100 }, { 200, 200 }, { 100, 200 } } };
Polygon clipPolygon = { { { 150, 150 }, { 250, 150 }, { 250, 250 }, { 150, 250 } } };
// 绘制多边形和裁剪框
drawPolygon(pDC, subjectPolygon);
drawClipRectangle(pDC, clipPolygon);
// 裁剪多边形
Polygon outputPolygon = clipPolygon(subjectPolygon, clipPolygon);
// 绘制裁剪后的多边形
drawPolygon(pDC, outputPolygon);
}
```
在该代码中,我们定义了结构体 Point 和 Polygon 表示点和多边形,clipPolygon 函数接收两个多边形作为参数,返回裁剪后的多边形。我们使用 MFC 的 CDC 绘制多边形和裁剪框,并使用 drawPolygon 函数绘制多边形,使用 drawClipRectangle 函数绘制裁剪框。最后,在 OnDraw 函数中调用 clipPolygon 函数对多边形进行裁剪,并使用 drawPolygon 函数绘制裁剪后的多边形。
阅读全文