pso bp python代码
时间: 2023-07-10 13:20:05 浏览: 106
以下是使用PSO和BP算法进行神经网络训练的Python代码示例:
```python
import numpy as np
class PSO_BP_Network:
def __init__(self, n_inputs, n_hidden, n_outputs):
# 初始化神经网络的结构
self.n_inputs = n_inputs
self.n_hidden = n_hidden
self.n_outputs = n_outputs
self.weights_ih = np.random.randn(self.n_hidden, self.n_inputs)
self.weights_ho = np.random.randn(self.n_outputs, self.n_hidden)
self.bias_h = np.random.randn(self.n_hidden, 1)
self.bias_o = np.random.randn(self.n_outputs, 1)
# 初始化PSO算法的参数
self.n_particles = 50
self.max_iter = 100
self.w = 0.5
self.c1 = 2
self.c2 = 2
self.velocity_ih = np.zeros_like(self.weights_ih)
self.velocity_ho = np.zeros_like(self.weights_ho)
self.best_position_ih = np.copy(self.weights_ih)
self.best_position_ho = np.copy(self.weights_ho)
self.best_error = float('inf')
def sigmoid(self, x):
# sigmoid函数
return 1 / (1 + np.exp(-x))
def feedforward(self, inputs):
# 前向传播
inputs = np.array(inputs).reshape(-1, 1)
hidden = self.sigmoid(np.dot(self.weights_ih, inputs) + self.bias_h)
outputs = self.sigmoid(np.dot(self.weights_ho, hidden) + self.bias_o)
return outputs
def train(self, training_inputs, training_outputs):
# 使用PSO和BP算法进行训练
for i in range(self.max_iter):
for j in range(self.n_particles):
# 更新粒子的速度和位置
r1 = np.random.rand(*self.weights_ih.shape)
r2 = np.random.rand(*self.weights_ih.shape)
self.velocity_ih = self.w * self.velocity_ih + \
self.c1 * r1 * (self.best_position_ih - self.weights_ih) + \
self.c2 * r2 * (self.weights_ih[j] - self.weights_ih)
r1 = np.random.rand(*self.weights_ho.shape)
r2 = np.random.rand(*self.weights_ho.shape)
self.velocity_ho = self.w * self.velocity_ho + \
self.c1 * r1 * (self.best_position_ho - self.weights_ho) + \
self.c2 * r2 * (self.weights_ho[j] - self.weights_ho)
self.weights_ih += self.velocity_ih
self.weights_ho += self.velocity_ho
# 使用当前的权重进行BP算法训练
error = 0
for k in range(len(training_inputs)):
inputs = training_inputs[k]
targets = training_outputs[k]
outputs = self.feedforward(inputs)
error += np.sum((targets - outputs) ** 2)
outputs_delta = (targets - outputs) * outputs * (1 - outputs)
hidden_delta = np.dot(self.weights_ho.T, outputs_delta) * hidden * (1 - hidden)
self.weights_ho += self.learning_rate * np.dot(outputs_delta, hidden.T)
self.weights_ih += self.learning_rate * np.dot(hidden_delta, inputs.T)
# 更新全局最优解
if error < self.best_error:
self.best_error = error
self.best_position_ih = np.copy(self.weights_ih)
self.best_position_ho = np.copy(self.weights_ho)
```
在上面的代码中,我们定义了一个名为PSO_BP_Network的类,它包含了神经网络的结构、PSO算法的参数以及训练方法。训练方法中使用了两个循环,外层循环是PSO算法迭代的次数,内层循环是对每个粒子使用BP算法进行权重更新。在每个粒子的位置和速度更新之后,我们使用当前的权重进行BP算法训练,并计算出当前的误差。如果当前的误差比全局最优解还要小,则更新全局最优解。
阅读全文