根据language和score创建一个DataFrame
时间: 2024-05-13 14:20:13 浏览: 48
好的,以下是使用Python的pandas库创建一个DataFrame的代码:
```python
import pandas as pd
# 创建数据
language = ['Python', 'Java', 'C++', 'JavaScript']
score = [90, 85, 80, 95]
# 创建DataFrame
df = pd.DataFrame({'language': language, 'score': score})
# 打印DataFrame
print(df)
```
输出结果:
```
language score
0 Python 90
1 Java 85
2 C++ 80
3 JavaScript 95
```
相关问题
根据language和score创建一个dataframe
好的,可以使用pandas库来创建一个dataframe。以下是代码示例:
```python
import pandas as pd
languages = ['Python', 'Java', 'C++', 'JavaScript']
scores = [90, 85, 95, 80]
df = pd.DataFrame({'Language': languages, 'Score': scores})
print(df)
```
输出结果如下:
```
Language Score
0 Python 90
1 Java 85
2 C++ 95
3 JavaScript 80
```
其中,`languages` 列表存储语言名称,`scores` 列表存储对应语言的分数,`pd.DataFrame()` 函数用于创建dataframe,大括号内的字典表示列名和对应的数据。最后使用 `print()` 函数输出结果。
(1)根据列表["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"]创建一个变量名为language的Series; (2)创建一个由随机整型组成的Series,要求长度与language相同,变量名为score; (3)根据language和score创建一个DataFrame; (4)输出该DataFrame的前4行数据; (5)输出该DataFrame中language字段为Python的行; (6)将DataFrame按照score字段的值进行升序排序; (7)统计language字段中每种编程语言出现的次数。
好的,以下是您的回答:
```python
import pandas as pd
import numpy as np
# (1) 根据列表["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"]创建一个变量名为language的Series
language = pd.Series(["Python","C","Scala","Java","GO","Scala","SQL","PHP","Python"])
# (2) 创建一个由随机整型组成的Series,要求长度与language相同,变量名为score
score = pd.Series(np.random.randint(0, 100, len(language)))
# (3) 根据language和score创建一个DataFrame
df = pd.DataFrame({"language": language, "score": score})
# (4) 输出该DataFrame的前4行数据
print(df.head(4))
# (5) 输出该DataFrame中language字段为Python的行
print(df[df["language"] == "Python"])
# (6) 将DataFrame按照score字段的值进行升序排序
df = df.sort_values("score", ascending=True)
# (7) 统计language字段中每种编程语言出现的次数
count = df["language"].value_counts()
print(count)
```
希望能够帮到您!
阅读全文