# 转换数据类型 df['column'] = df['column'].astype('float') # 合并数据类型 df['column'] = df['column1'].astype(str) + df['column2'].astype(str)
时间: 2023-08-16 09:03:25 浏览: 77
这是正确的数据类型转换和数据类型合并的方式。可以使用astype()方法将一列数据转换为特定的数据类型,例如将字符串转换为浮点数。而对于数据类型合并,可以使用加号操作符(+)将两个列的数据合并为一个新的列,然后将其赋值给原数据集中的某个列。需要注意的是,这种方法只适用于将两个列的数据类型都转换为字符串类型的情况下。如果需要合并不同数据类型的列,可以使用其他方法,如转换为字符串后再进行合并。
相关问题
神经网络输入层4个神经元,隐藏层4个神经元,输出层1个神经元,这段代码报错数据维度错误,应该怎么改def result_visualization(x_test, y_test, result): cols = y_test.shape[1] y = [] pre = [] # 反转换类别的独热编码 for i in range(cols): if y_test[0][i] == 0: y.append('setosa') elif y_test[0][i] == 1: y.append('versicolor') else: y.append('virginica') for j in range(cols): if result[0][j] == 0: pre.append('setosa') elif result[0][j] == 1: pre.append('versicolor') else: pre.append('virginica') # 将特征和类别矩阵拼接起来 real = np.column_stack((x_test.T, y)) prediction = np.column_stack((x_test.T, pre)) # 转换成DataFrame类型,并添加columns df_real = pd.DataFrame(real, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']) df_prediction = pd.DataFrame(prediction, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']) # 将特征列转换为float类型,否则radviz会报错 df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float) df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float) # 绘图 plt.figure('真实分类') radviz(df_real, 'Species', color=['blue', 'green', 'red']) plt.figure('预测分类') radviz(df_prediction, 'Species', color=['blue', 'green', 'red']) plt.show()
可能是因为y_test的维度不是二维的,而是一维的,导致使用shape属性获取y_test的列数出错。可以在代码中加入以下语句,将y_test转换为二维的形式:
```
if len(y_test.shape) == 1:
y_test = y_test.reshape(-1, 1)
```
这段代码的作用是:如果y_test的维度是一维的,将其转换为二维的形式,行数自动计算。如果y_test的维度已经是二维的,不做任何操作。修改后的完整代码如下:
```
def result_visualization(x_test, y_test, result):
if len(y_test.shape) == 1:
y_test = y_test.reshape(-1, 1)
cols = y_test.shape[1]
y = []
pre = []
# 反转换类别的独热编码
for i in range(cols):
if y_test[0][i] == 0:
y.append('setosa')
elif y_test[0][i] == 1:
y.append('versicolor')
else:
y.append('virginica')
for j in range(cols):
if result[0][j] == 0:
pre.append('setosa')
elif result[0][j] == 1:
pre.append('versicolor')
else:
pre.append('virginica')
# 将特征和类别矩阵拼接起来
real = np.column_stack((x_test.T, y))
prediction = np.column_stack((x_test.T, pre))
# 转换成DataFrame类型,并添加columns
df_real = pd.DataFrame(real, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
df_prediction = pd.DataFrame(prediction, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
# 将特征列转换为float类型,否则radviz会报错
df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
# 绘图
plt.figure('真实分类')
radviz(df_real, 'Species', color=['blue', 'green', 'red'])
plt.figure('预测分类')
radviz(df_prediction, 'Species', color=['blue', 'green', 'red'])
plt.show()
```
神经网络输入层和隐藏层神经元从20改为5时,这一段代码怎么改def result_visualization(x_test, y_test, result): cols = y_test.shape[1] y = [] pre = [] # 反转换类别的独热编码 for i in range(cols): if y_test[0][i] == 0: y.append('setosa') elif y_test[0][i] == 1: y.append('virginica') for j in range(cols): if result[0][j] == 0: pre.append('setosa') elif result[0][j] == 1: pre.append('virginica') else: pre.append('unknown') # 将特征和类别矩阵拼接起来 real = np.column_stack((x_test.T, y)) prediction = np.column_stack((x_test.T, pre)) # 转换成DataFrame类型,并添加columns df_real = pd.DataFrame(real, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species']) df_prediction = pd.DataFrame(prediction, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species']) # 将特征列转换为float类型,否则radviz会报错 df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float) df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float) # 绘图 plt.figure('真实分类') radviz(df_real, 'Species', color=['blue', 'green', 'red', 'yellow']) plt.figure('预测分类') radviz(df_prediction, 'Species', color=['blue', 'green', 'red', 'yellow']) plt.show()
当你将输入层和隐藏层神经元从20改为5时,你需要对这段代码进行如下修改:
```python
def result_visualization(x_test, y_test, result):
cols = y_test.shape[1]
y = []
pre = []
# 反转换类别的独热编码
for i in range(cols):
if y_test[0][i] == 0:
y.append('setosa')
elif y_test[0][i] == 1:
y.append('versicolor')
else:
y.append('virginica')
for j in range(cols):
if result[0][j] == 0:
pre.append('setosa')
elif result[0][j] == 1:
pre.append('versicolor')
else:
pre.append('virginica')
# 将特征和类别矩阵拼接起来
real = np.column_stack((x_test.T, y))
prediction = np.column_stack((x_test.T, pre))
# 转换成DataFrame类型,并添加columns
df_real = pd.DataFrame(real, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
df_prediction = pd.DataFrame(prediction, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
# 将特征列转换为float类型,否则radviz会报错
df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
# 绘图
plt.figure('真实分类')
radviz(df_real, 'Species', color=['blue', 'green', 'red'])
plt.figure('预测分类')
radviz(df_prediction, 'Species', color=['blue', 'green', 'red'])
plt.show()
```
主要的修改如下:
1. 在反转换类别的独热编码时,需要将第三类的判断也加上,因为数据集中共有三个类别。
2. 在绘制图像时,需要将颜色列表中的黄色去掉,因为在数据集中只有蓝色、绿色和红色三种颜色,没有黄色。
阅读全文