make force_control -j4

时间: 2023-08-03 13:06:23 浏览: 39
make force_control -j4 是一个用于构建名为 "force_control" 的目标的命令。选项 "-j4" 表示并行构建,指示让构建过程使用4个并发任务来加快构建速度。 注意:作为一个语言模型 AI,我无法在实际的命令行环境中执行命令。如果您想在命令行中运行该命令,请确保您已经在正确的项目目录下,并且已经配置好了相应的编译环境和构建系统。
相关问题

write a C++ example shows how to do force or torque control in offboard mode from a ROS 2 node with XRCE-DDS

Here's an example of how to do force control in offboard mode using C++ and XRCE-DDS: ```cpp #include <iostream> #include <chrono> #include <thread> #include "rclcpp/rclcpp.hpp" #include "geometry_msgs/msg/wrench_stamped.hpp" #include "std_msgs/msg/float64_multi_array.hpp" #include "rosidl_runtime_cpp/message_type_support_decl.hpp" #include "rosidl_typesupport_cpp/message_type_support.hpp" #include "rmw_fastrtps_cpp/get_participant.hpp" #include "rmw_fastrtps_cpp/get_publisher.hpp" #include "rmw_fastrtps_cpp/get_subscriber.hpp" #include "rmw_uros/options.h" #include "uxr/client/client.h" #include "sensor_msgs/msg/joint_state.hpp" using namespace std::chrono_literals; #define DEFAULT_TIMEOUT 1000 void set_wrench(float fx, float fy, float fz, float tx, float ty, float tz, geometry_msgs::msg::WrenchStamped& wrench) { wrench.wrench.force.x = fx; wrench.wrench.force.y = fy; wrench.wrench.force.z = fz; wrench.wrench.torque.x = tx; wrench.wrench.torque.y = ty; wrench.wrench.torque.z = tz; } class ForceControlNode : public rclcpp::Node { public: ForceControlNode() : Node("force_control_node") { joint_state_sub_ = this->create_subscription<sensor_msgs::msg::JointState>("joint_states", 10, std::bind(&ForceControlNode::joint_state_callback, this, std::placeholders::_1)); wrench_pub_ = this->create_publisher<geometry_msgs::msg::WrenchStamped>("wrench", 10); setup_dds(); } private: void setup_dds() { auto domain_id = 0; uxr_set_custom_transport(uxr::Transport::CUSTOM); rmw_uros_options_t custom_transport_options = rmw_get_zero_initialized_uros_options(); uxr_init_custom_transport(&custom_transport_options, uxr_common_tcp_platform); const char* participant_name = "force_control_participant"; const char* topic_name = "force_control_topic"; // Create participant uxr_init_options_t init_options = uxr_init_options_create(); uxr_set_custom_transport_callbacks( &init_options, uxr_common_tcp_platform, custom_transport_open_cb, custom_transport_close_cb, custom_transport_write_cb, custom_transport_read_cb, reinterpret_cast<void*>(this)); participant_ = rmw_fastrtps_cpp::get_participant( this->get_node_base_interface(), this->get_node_topics_interface(), domain_id, participant_name, "", // empty node namespace std::vector<std::string>()); // Register ROS message type with XRCE-DDS const rosidl_message_type_support_t* type_support = rosidl_typesupport_cpp::get_message_type_support_handle<geometry_msgs::msg::WrenchStamped>(); uxr_register_topic_xml( &session_, participant_->impl_->participant, topic_name, type_support->typesupport_identifier, "<dds>" "<topic>" "<name>force_control_topic</name>" "<dataType>geometry_msgs::msg::WrenchStamped_</dataType>" "</topic>" "</dds>"); // Create publisher publisher_ = rmw_fastrtps_cpp::get_publisher( this->get_node_base_interface(), this->get_node_topics_interface(), participant_, type_support, topic_name, "", &rmw_qos_profile_default); // Create subscriber subscriber_ = rmw_fastrtps_cpp::get_subscriber( this->get_node_base_interface(), this->get_node_topics_interface(), participant_, type_support, topic_name, "", &rmw_qos_profile_default, false); // Create session uxr_init_session_xml(&init_options, &session_, participant_->impl_->participant, domain_id); UXR_AGENT_LOG_INFO( &session_.info, UXR_CREATE_ENTITIES_FROM_REF_RESOURCE, reinterpret_cast<uint64_t>(participant_->impl_->participant), session_.last_requested_resource); // Get publisher and subscriber handles publisher_handle_ = static_cast<uxrObjectId>(publisher_->publisher_->id_); subscriber_handle_ = static_cast<uxrObjectId>(subscriber_->subscriber_->id_); } void joint_state_callback(const sensor_msgs::msg::JointState::SharedPtr msg) { // Compute force and torque based on joint positions and publish to topic float fx = 0.0; float fy = 0.0; float fz = 0.0; float tx = 0.0; float ty = 0.0; float tz = 0.0; // Compute desired force and torque values here, based on joint positions and other sensor data geometry_msgs::msg::WrenchStamped wrench; set_wrench(fx, fy, fz, tx, ty, tz, wrench); wrench_pub_->publish(wrench); // Send desired force and torque values to robot using XRCE-DDS uint8_t buffer[1024]; uint32_t length = 0; const uint16_t writer_id = 0x01; const uint16_t reader_id = 0x02; // Serialize message ucdrBuffer ub; ucdr_init_buffer(&ub, buffer, sizeof(buffer)); length = serialize_wrench(msg, &ub); // Write message to DDS network uxrStreamId output_stream = uxr_create_output_stream(&session_, UXR_RELIABLE_STREAM); uxr_prepare_output_stream(&session_, output_stream, publisher_handle_, writer_id, buffer, length); uxr_run_session_until_timeout(&session_, DEFAULT_TIMEOUT); uxr_delete_output_stream(&session_, output_stream); } uint32_t serialize_wrench(const geometry_msgs::msg::WrenchStamped::SharedPtr msg, ucdrBuffer* ub) { uint32_t length = 0; length += ucdr_serialize_uint32_t(ub, msg->header.stamp.sec); length += ucdr_serialize_uint32_t(ub, msg->header.stamp.nanosec); length += ucdr_serialize_float(ub, msg->wrench.force.x); length += ucdr_serialize_float(ub, msg->wrench.force.y); length += ucdr_serialize_float(ub, msg->wrench.force.z); length += ucdr_serialize_float(ub, msg->wrench.torque.x); length += ucdr_serialize_float(ub, msg->wrench.torque.y); length += ucdr_serialize_float(ub, msg->wrench.torque.z); return length; } static bool custom_transport_open_cb(void* args, const char* ip, uint16_t port) { return true; } static bool custom_transport_close_cb(void* args) { return true; } static size_t custom_transport_write_cb( void* args, const uint8_t* buf, size_t len, uint8_t* errcode) { auto* node = reinterpret_cast<ForceControlNode*>(args); return node->write_cb(buf, len, errcode); } static size_t custom_transport_read_cb(void* args, uint8_t* buf, size_t len, int timeout, uint8_t* errcode) { auto* node = reinterpret_cast<ForceControlNode*>(args); return node->read_cb(buf, len, timeout, errcode); } size_t write_cb(const uint8_t* buf, size_t len, uint8_t* errcode) { // Write data to ROS topic geometry_msgs::msg::WrenchStamped wrench; ucdrBuffer ub; ucdr_init_buffer(&ub, const_cast<uint8_t*>(buf), len); deserialize_wrench(&ub, wrench); wrench_pub_->publish(wrench); return len; } size_t read_cb(uint8_t* buf, size_t len, int timeout, uint8_t* errcode) { // Read data from ROS topic geometry_msgs::msg::WrenchStamped wrench; if (subscriber_->take(&wrench, nullptr, nullptr) == RMW_RET_OK) { ucdrBuffer ub; ucdr_init_buffer(&ub, buf, len); serialize_wrench(wrench, &ub); return ub.iterator - ub.init; } return 0; } void deserialize_wrench(ucdrBuffer* ub, geometry_msgs::msg::WrenchStamped& wrench) { wrench.header.stamp.sec = ucdr_deserialize_uint32_t(ub); wrench.header.stamp.nanosec = ucdr_deserialize_uint32_t(ub); wrench.wrench.force.x = ucdr_deserialize_float(ub); wrench.wrench.force.y = ucdr_deserialize_float(ub); wrench.wrench.force.z = ucdr_deserialize_float(ub); wrench.wrench.torque.x = ucdr_deserialize_float(ub); wrench.wrench.torque.y = ucdr_deserialize_float(ub); wrench.wrench.torque.z = ucdr_deserialize_float(ub); } rclcpp::Subscription<sensor_msgs::msg::JointState>::SharedPtr joint_state_sub_; rclcpp::Publisher<geometry_msgs::msg::WrenchStamped>::SharedPtr wrench_pub_; rmw_fastrtps_cpp::Participant* participant_; rmw_fastrtps_cpp::Publisher* publisher_; rmw_fastrtps_cpp::Subscriber* subscriber_; uxrSession session_; uxrObjectId publisher_handle_; uxrObjectId subscriber_handle_; }; int main(int argc, char** argv) { rclcpp::init(argc, argv); rclcpp::spin(std::make_shared<ForceControlNode>()); rclcpp::shutdown(); return 0; } ``` This example subscribes to joint state data and computes the desired force and torque values based on the current joint positions. It then publishes these values to a ROS topic and sends them to the robot using XRCE-DDS. The robot can then use these values to apply the desired force and torque using a force/torque controller.

no rule to make target stop.

根据引用\[1\]中提供的信息,如果你在执行"make menuconfig"命令时出现"no rule to make target stop"的错误,可能是因为你没有在内核源码目录下进行操作。请确保你在正确的目录下执行该命令,比如在"/usr/src/linux***"目录下(其中***是内核版本号)。如果你已经在正确的目录下执行了命令,但仍然出现错误,你可以尝试修改Makefile文件。使用vim编辑器打开Makefile文件(在/usr/src/linux***目录下使用命令"vim Makefile"),然后找到报错的行号。根据报错行的内容,你可以尝试修改相应的行。例如,如果报错行是"config %config: scripts_basic outputmakefile FORCE",你可以尝试将其修改为"%config: scripts_basic outputmakefile FORCE"。如果报错行是"/ %/: prepare scripts FORCE",你可以尝试将其修改为"%/: prepare scripts FORCE"。这样应该可以解决该错误。 #### 引用[.reference_title] - *1* [make: *** No rule to make target `menuconfig‘. Stop.问题](https://blog.csdn.net/weixin_43796595/article/details/117045700)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

最新推荐

recommend-type

微软内部资料-SQL性能优化5

However, if we are searching for multiple rows, such as duplicate values, or keys in a range, anything more than a small number of rows will make the nonclustered index search very inefficient. ...
recommend-type

微软内部资料-SQL性能优化3

Lesson 4: Information Collection and Analysis 63 Lesson 5: Concepts – Formulating and Implementing Resolution 81 Module 4: Troubleshooting Locking and Blocking Overview At the end of ...
recommend-type

Google C++ Style Guide(Google C++编程规范)高清PDF

Classes Inheritance Multiple Inheritance Interfaces Operator Overloading Access Control Declaration Order Write Short Functions Google-Specific Magic Smart Pointers cpplint Other C++ Features ...
recommend-type

ipython-7.22.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

五自印象影视剪辑变现大师课完整教程(30节课)-课程网盘链接提取码下载 .txt

课程内容: 第1节:剪映界面、转场、音频的使用、.mp4 第2节:剪映文本、贴纸、画中画的使用.mp4 第3节:特效、比例、背景、调节功能使用.mp4 第4节:剪映调节功能的使用.mp4 第5节:养号规则.mp4 第6节:苹果手机如何录屏.mp4 第7节:如何添加水印如何添加视频水印,mp4 第8节:我如何剪辑视频.mp4 第9节:如何定位账号方向.mp4 第10节:如何快速找素材.mp4 第11节:养号之破播放.mp4 第12节:去除水印的两种方法,mp4 第13节:如何旋转视频.mp4 第14节:发布作品步骤,mp4 第15节:如何选取文案.mp4 第16节:如何做垂直度,mp4 第17节:如何添加背景音乐.mp4 第18节:热门技巧总结.mp4 第19节:需要注意的点.mp4 第20节:打造爆款视频.mp4 第21节:抖音热门机制,mp4 第22节:抖音算法四大机制.mp4 第23节:制作三屏封面.mp4 第24节:制作求关注结尾,mp4 第25节:搬运问题详解及如何避免.mp4 第26节:制作语音开头.mp4 第27节:用电
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。