void Del_LinkList(LNode*p, int m, int n) { LNode* q; cout << "程序运行后,出列人的顺序"; if (m == 1) { //m=1时,单独处理 q = p; for (int i = 1 ; i <= n; i++) { cout << q->data << " "; q = q->next; } } else { for (int j = 1; j <= m; j++) { if (j == m - 1 && p->next != p) { q = p->next; p->next = p->next->next; p = p->next; cout << q->data << " "; delete q; j = 0; continue; } if (p->next == p) { cout << p->data; j = m + 1; } else p = p->next; } } cout << endl; }

时间: 2024-02-07 12:01:52 浏览: 32
这段代码实现了一个循环链表中按照一定规则删除节点的功能。具体来说,函数接收三个参数,分别是指向循环链表头节点的指针p, 数组m和n。 函数的实现思路是,首先判断m是否为1,如果是,则单独处理,将从p开始的n个节点输出,并删除这些节点。如果m不为1,则从p开始向后遍历链表,每遍历m个节点就删除一个节点,输出该节点的值。需要注意的是,当链表中只剩下一个节点时,直接输出该节点的值即可。 这段代码的实现过程比较简单,但存在一些问题。首先,函数的参数m和n并没有被充分利用,只用到了m和n的值,并没有考虑它们的含义。其次,函数中使用了大量的if语句和continue语句,使得代码的可读性和可维护性较差。最后,函数中没有对边界情况进行充分考虑,可能会导致程序的运行错误。 因此,如果我要对该函数进行改进,我会考虑以下几点: 1. 修改函数的参数,使得函数更加通用。比如可以将m和n改为表示每次删除m个节点,删除n次的参数,这样可以更好地反映函数的含义。 2. 简化函数中的if语句和continue语句,使得代码更加简洁易读。可以考虑使用while循环来替代if语句。 3. 对边界情况进行充分考虑,在代码中加入必要的容错处理,避免程序运行错误。 4. 可以考虑利用模板来实现该函数,使得函数可以处理不同类型的数据。 通过以上改进,可以使得函数更加通用、易读、健壮,并且可以处理不同类型的数据。
相关问题

typedef struct Lnode { struct Lnode* next; int data; }Lnode, * LinkList; void InitList(LinkList & L) { L = new Lnode; L->next = NULL; }

L) { L = NULL; // 将头指针置为 NULL,表示链表为空 } void CreateList(LinkList& L, int n) { Lnode* p, * q; L = new Lnode; // 创建头结点 L->next = NULL; q = L; for (int i = 0; i < n; i++) { p = new Lnode; // 创建新节点 cin >> p->data; p->next = NULL; q->next = p; q = p; // 将新节点插入到链表尾部 } } void DestroyList(LinkList& L) { Lnode* p, * q; p = L; while (p != NULL) { q = p->next; delete p; p = q; // 释放链表中所有节点的内存空间 } L = NULL; } int ListLength(LinkList L) { int len = 0; Lnode* p = L; while (p->next != NULL) { len++; p = p->next; } return len; } bool ListEmpty(LinkList L) { return L->next == NULL; } void GetElem(LinkList L, int i, int& e) { Lnode* p = L->next; int j = 1; while (p != NULL && j < i) { p = p->next; j++; } if (p == NULL || j > i) { cout << "Error: out of range" << endl; return; } e = p->data; } int LocateElem(LinkList L, int e) { Lnode* p = L->next; int i = 1; while (p != NULL && p->data != e) { p = p->next; i++; } if (p == NULL) return 0; else return i; } void ListInsert(LinkList& L, int i, int e) { Lnode* p = L; int j = 0; while (p != NULL && j < i - 1) { p = p->next; j++; } if (p == NULL || j > i - 1) { cout << "Error: out of range" << endl; return; } Lnode* q = new Lnode; q->data = e; q->next = p->next; p->next = q; // 在第 i 个位置插入元素 e } void ListDelete(LinkList& L, int i, int& e) { Lnode* p = L; int j = 0; while (p->next != NULL && j < i - 1) { p = p->next; j++; } if (p->next == NULL || j > i - 1) { cout << "Error: out of range" << endl; return; } Lnode* q = p->next; e = q->data; p->next = q->next; delete q; // 删除第 i 个位置的元素,并将其值赋给 e } void ListTraverse(LinkList L) { Lnode* p = L->next; while (p != NULL) { cout << p->data << " "; p = p->next; } cout << endl; }

修改下列代码#include<bits/stdc++.h> using namespace std; typedef struct LNode { int data; LNode *next; }LNode,*LinkList; typedef struct { … { LNode *p=G.v[i]; while(p->next) { cout<<p->data<<" "; p=p->next; } cout<<p->data<<endl; }

这段代码是一个图的邻接表存储结构的输出函数,但是代码中缺少了图的数据结构定义和初始化,下面是一个完整的代码示例: ```c++ #include <bits/stdc++.h> using namespace std; const int MAXN = 1005; typedef struct LNode { int data; LNode* next; } LNode, *LinkList; typedef struct { LinkList first; } VexNode; typedef struct { VexNode vexs[MAXN]; int vexnum, arcnum; } Graph; void init(Graph& G) { // 初始化图 G.vexnum = G.arcnum = 0; for (int i = 1; i <= MAXN; i++) { G.vexs[i].first = NULL; } } void addEdge(Graph& G, int u, int v) { // 添加边 LNode* node = new LNode; node->data = v; node->next = G.vexs[u].first; G.vexs[u].first = node; } void printGraph(Graph& G) { // 输出图 for (int i = 1; i <= G.vexnum; i++) { LNode* p = G.vexs[i].first; while (p != NULL) { cout << p->data << " "; p = p->next; } cout << endl; } } int main() { Graph G; init(G); G.vexnum = 5; G.arcnum = 5; addEdge(G, 1, 2); addEdge(G, 1, 3); addEdge(G, 2, 4); addEdge(G, 3, 4); addEdge(G, 4, 5); printGraph(G); return 0; } ``` 在这个示例中,我们定义了图的数据结构 `Graph`,其中包括了顶点数组 `vexs` 和边的数量信息 `vexnum` 和 `arcnum`。`init` 函数用于初始化图,将顶点数组的 `first` 域初始化为 `NULL`。`addEdge` 函数用于添加边,具体实现是将一个节点插入到邻接表中。`printGraph` 函数用于输出图的邻接表存储结构。在主函数中,我们定义了一个 `Graph` 对象 `G`,并且添加了一些边,最后调用 `printGraph` 函数输出邻接表。

相关推荐

用C++编写程序,要求如下: ①输入多组数据,总计n*( a+b+2)+1行。其中,第一行整数n代表总计有n组数据,之后依次输入n组数据。每组数据包括a+b+2行,其中第一行是两个整数a和b,分别代表A(x)与B(x)的项数。之后紧跟a行,每行两个整数a1和a2,分别代表A(x)每项的系数和指数,再之后紧跟b行,每行两个整数b1和b2,分别代表B(x)每项的系数和指数,每组数据最后一行为一个字符(+、-、*、'),分别代表多项式的加法、减法、乘法和求导运算。所有数据的绝对值小于100,指数大于等于0。 ②编写的程序在我给出的代码上进行补充 ③当用户输入: 4 1 1 1 0 1 1 + 4 3 7 0 3 1 9 8 5 17 8 1 22 7 -9 8 + 1 1 1 1 1 1 - 1 1 1 1 1 1 ' 输出: 1x^1+1 5x^17+22x^7+11x^1+7 0 1 1 #include <iostream>#include <string> using namespace std; typedef struct LNode{ int coe;int exp;struct LNode *next; }LNode,*LinkList; void CreatePolynomial(LinkList &L,int n){ L=new LNode;L->next=NULL; for(int i=0;i<n;i++){ LinkList p=new LNode;cin>>p->coe>>p->exp; LinkList pre=L,cur=L->next; while(cur&&p->exp<cur->exp){ pre=cur;cur=cur->next;} p->next=cur;pre->next=p;} } void OutputPolynomial(LinkList L){ if(!L||!L->next) cout<<0;LinkList p=L->next; while(p){ if(p==L->next){ if (p->exp!=0) cout<coe<<"x^"<exp; else cout<coe;} else{ if(p->coe>0) cout<<"+"; if(p->exp!=0) cout<coe<<"x^"<exp; else cout<coe;} p=p->next;} cout<<endl;} LinkList Add(LinkList LA,LinkList LB){} void Minus(LinkList LA,LinkList LB){} void Mul(LinkList LA,LinkList LB){} void Diff(LinkList L){ LinkList p=L->next;LinkList r=NULL; while(p){ p->coe*=p->exp;p->exp--; if(p->exp<0){ r=p;p=p->next;delete r;} else{ p=p->next;} } OutputPolynomial(L);} void Opt(LinkList &LA,LinkList &LB,string s){ if(s=="+") OutputPolynomial(Add(LA, LB));if(s=="-") Minus(LA, LB); if(s=="*") Mul(LA, LB);if(s=="'"){ Diff(LA);Diff(LB);} } int main(){ int n;cin>>n; while(n--){ int a,b;cin>>a>>b;LinkList LA,LB;CreatePolynomial(LA,a); CreatePolynomial(LB,b);string s;cin>>s;Opt(LA,LB,s);} return 0;}

#include <iostream>; #include<string>; using namespace std; typedef string ElemType; #define TRUE 1; #define FALSE 0; #define OK 1; #define ERROR 0; #define OVERFLOW -1; #define MAXSIZE 999999; typedef int Status; typedef struct Book { string bookID; //书号 string bookName; //书名 string writerName; //作者 int booknumnow; //现库存量 string biglei; //大类 string smalllei; //小类 }Book, * Bookk; //书本类型 typedef struct LNode //链表 { Book* book; struct LNode* next; }LNode, * LinkList; typedef struct FiveTNode//每一层有五类 { ElemType data; struct FiveTNode* child1, * child2, * child3, * child4, * child5; LNode* lnode; }FiveTNode, * FiveTree; void CreateFiveTree(FiveTree& T, FiveTree& A, FiveTree& B, FiveTree& C, FiveTree& D, FiveTree& E)//创建树 { T = new FiveTNode;//生成根结点 T->data = "图书"; T->child5 = new FiveTNode; FiveTree E = T->child5; E->data = "综合类书籍"; E->child5 = new FiveTNode; E->child5->data = "安全科学"; E->child5->lnode = new LNode; E->child5->lnode->book = new Book; E->child5->lnode->book->bookName = "《安全科学你我需知》"; E->child5->lnode->book->bookID = "25"; E->child5->lnode->book->writerName = "刘俊"; E->child5->lnode->book->booknumnow = 58; E->child5->lnode->next = NULL; //cout << A->child1->lnode->book->bookName; //cout << E->child5->lnode->book->bookID; } int main() { string book_update_ID_new, book_update_ID; cin >> book_update_ID; cin >> book_update_ID_new; FiveTree T, A, B, C, D, E; CreateFiveTree(T, A, B, C, D, E); LinkList s = new LNode; LinkList q, t; LinkList pe5 = E->child5->lnode; s->book->bookID = book_update_ID_new; s->next = pe5->next; pe5->next = s; q = E->child5->lnode; while (q && q->book->bookID != book_update_ID) { q = q->next; } q = q->next; t = q->next; q->next = t->next; delete t; cout << s->book->bookID << " " << s->book->bookName << " " << s->book->writerName << endl; cout << " ***************************************" << endl; return 0; }

最新推荐

recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

求集合数据的均方差iction-mast开发笔记

求集合数据的均方差
recommend-type

Wom6.3Wom6.3Wom6.3

Wom6.3Wom6.3Wom6.3
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依