用c语言写一个汉诺塔的递归

时间: 2023-11-21 16:05:41 浏览: 56
函数。 好的,以下是 C 语言实现汉诺塔的递归函数: ```c #include <stdio.h> void Hanoi(int n, char A, char B, char C) { if (n == 1) { printf("%c -> %c\n", A, C); return; } Hanoi(n - 1, A, C, B); printf("%c -> %c\n", A, C); Hanoi(n - 1, B, A, C); } int main() { int n; printf("请输入汉诺塔的层数: "); scanf("%d", &n); Hanoi(n, 'A', 'B', 'C'); return 0; } ``` 以上代码中,Hanoi 函数接收 4 个参数:n 表示当前层数,A、B、C 分别表示 3 个柱子的编号。当 n 等于 1 时,直接将 A 柱子上的最后一个盘子移动到 C 柱子上。移动 n 层时,先将上面 n-1 层从 A 柱子移动到 B 柱子上,在将 A 柱子上的最后一层移动到 C 柱子上,最后再将 B 柱子上的 n-1 层移动到 C 柱子上。
相关问题

用C语言写一个非递归汉诺塔

下面是使用 C 语言编写的非递归汉诺塔的代码: ```c #include <stdio.h> #include <stdlib.h> // 定义一个栈结构体 typedef struct { int *data; // 栈的数据存储区 int top; // 栈顶指针 int size; // 栈的容量 } Stack; // 初始化栈 void initStack(Stack *stack, int size) { stack->data = (int *) malloc(sizeof(int) * size); stack->top = -1; stack->size = size; } // 判断栈是否为空 int isEmpty(Stack *stack) { return stack->top == -1; } // 判断栈是否已满 int isFull(Stack *stack) { return stack->top == stack->size - 1; } // 入栈操作 void push(Stack *stack, int value) { if (isFull(stack)) { printf("Stack overflow!\n"); return; } stack->data[++stack->top] = value; } // 出栈操作 int pop(Stack *stack) { if (isEmpty(stack)) { printf("Stack underflow!\n"); return -1; } return stack->data[stack->top--]; } // 非递归实现汉诺塔移动操作 void hanoi(int n) { Stack s1, s2, s3; // 定义三个栈 initStack(&s1, n); // 初始化第一个栈 initStack(&s2, n); // 初始化第二个栈 initStack(&s3, n); // 初始化第三个栈 int i, x, from, to, tmp; // 定义临时变量 for (i = n; i >= 1; i--) { push(&s1, i); // 初始化第一个栈 } if (n % 2 == 0) { // 判断奇偶性 tmp = s2.top; s2.top = s3.top; s3.top = tmp; from = 1; to = 2; } else { tmp = s1.top; s1.top = s3.top; s3.top = tmp; from = 1; to = 3; } int step = 0; while (s3.top != n - 1) { switch (step % 3) { case 0: // 第一步 if (!isEmpty(&s1)) { x = pop(&s1); push(&s2, x); printf("%d -> %d\n", from, to); } else { x = pop(&s2); push(&s1, x); printf("%d -> %d\n", to, from); } if (x % 2 == 0) { if (from == 1) { to = 3; } else { to = 1; } } else { if (from == 1) { to = 2; } else { to = 1; } } from = 3 - from - to; break; case 1: // 第二步 if (!isEmpty(&s1) && (isEmpty(&s2) || s1.data[s1.top] < s2.data[s2.top])) { x = pop(&s1); push(&s2, x); printf("%d -> %d\n", from, to); } else { x = pop(&s2); push(&s1, x); printf("%d -> %d\n", to, from); } if (x % 2 == 0) { if (from == 1) { to = 3; } else { to = 1; } } else { if (from == 1) { to = 2; } else { to = 1; } } from = 3 - from - to; break; case 2: // 第三步 if (!isEmpty(&s1)) { x = pop(&s1); push(&s3, x); printf("%d -> %d\n", from, to); } else { x = pop(&s3); push(&s1, x); printf("%d -> %d\n", to, from); } if (x % 2 == 0) { if (from == 1) { to = 3; } else { to = 1; } } else { if (from == 1) { to = 2; } else { to = 1; } } from = 3 - from - to; break; } step++; } } int main() { int n; printf("Enter the number of disks: "); scanf("%d", &n); hanoi(n); return 0; } ``` 这个非递归算法模拟了汉诺塔的移动过程,使用了三个栈来模拟三个柱子,通过不断出栈和入栈操作,实现了汉诺塔的移动。

c语言写汉诺塔的递归

### 回答1: 好的,我会用中文来解释如何用递归来写汉诺塔的程序。 首先,如果只有一个盘子,我们可以直接将它从一根柱子移动到另一根柱子。如果有多个盘子,我们可以用递归的方法来解决。我们先将上面的所有盘子(除了最大的盘子)从源柱子移动到辅助柱子,然后将最大的盘子移动到目标柱子,最后将所有盘子从辅助柱子移动到目标柱子。 下面是一个简单的递归函数,它可以帮助你理解这个过程: ``` void hanoi(int n, char src, char aux, char dest) { if (n == 1) { // 如果只有一个盘子,直接移动 printf("Move disk 1 from %c to %c\n", src, dest); return; } // 将上面的所有盘子(除了最大的盘子)从源柱子移动到辅助柱子 hanoi(n - 1, src, dest, aux); // 将最大的盘子从源柱子移动到目标柱子 printf("Move disk %d from %c to %c\n", n, src, dest); // 将所有盘子从辅助柱子移动到目标柱子 hanoi(n - 1, aux, src, dest); } ``` 希望这对你有帮助。 ### 回答2: 汉诺塔问题是经典的递归问题,递归函数用于解决问题时,首先要找到递归的出口条件,然后再考虑递归的过程。 在汉诺塔问题中,我们需要将盘子从一个柱子移动到另一个柱子上,且每次只能移动一个盘子,且不能将较大的盘子放在较小的盘子上面。 下面是用C语言编写汉诺塔的递归函数的示例: #include <stdio.h> void hanoi(int n, char A, char B, char C) { // 递归出口条件 if (n == 1) { printf("将盘子1从%c移动到%c\n", A, C); return; } // 将n-1个盘子从A柱移动到B柱 hanoi(n - 1, A, C, B); // 将最大的盘子从A柱移动到C柱 printf("将盘子%d从%c移动到%c\n", n, A, C); // 将n-1个盘子从B柱移动到C柱 hanoi(n - 1, B, A, C); } int main() { int n; // 盘子的数量 printf("请输入盘子的数量:"); scanf("%d", &n); printf("移动的步骤如下:\n"); hanoi(n, 'A', 'B', 'C'); return 0; } 以上使用了一个hanoi函数来实现递归操作,其中n表示盘子的数量,A、B、C表示三个柱子。 在hanoi函数中,首先判断递归的出口条件,当只有一个盘子时,直接将该盘子从A柱移动到C柱; 然后递归调用hanoi函数,将n-1个盘子从A柱通过C柱移动到B柱; 最后将最大的盘子从A柱直接移动到C柱; 再次递归调用hanoi函数,将n-1个盘子从B柱通过A柱移动到C柱。 通过这样不断递归调用hanoi函数,直到盘子全部移动完成。 ### 回答3: C语言中的汉诺塔问题是一个典型的递归问题。汉诺塔问题的目标是将一堆盘子从起始柱子移动到目标柱子,其中有三根柱子可供使用。规则是一次只能移动一个盘子,并且较大的盘子不能放在较小的盘子之上。 下面是一个使用C语言编写的汉诺塔递归解决方案: ```c #include <stdio.h> void hanoi(int n, char start, char middle, char end) { // 递归的出口,当只有一个盘子时直接移动即可 if (n == 1) { printf("Move disk 1 from %c to %c\n", start, end); return; } // 将 n-1 个盘子从起始柱子移动到中间柱子 hanoi(n - 1, start, end, middle); // 将最底下的一个盘子从起始柱子移动到目标柱子 printf("Move disk %d from %c to %c\n", n, start, end); // 将 n-1 个盘子从中间柱子移动到目标柱子 hanoi(n - 1, middle, start, end); } int main() { int numDisks = 3; // 盘子的数量 char start = 'A'; // 起始柱子 char middle = 'B'; // 中间柱子 char end = 'C'; // 目标柱子 hanoi(numDisks, start, middle, end); return 0; } ``` 这个程序首先定义了一个函数`hanoi`用于解决汉诺塔问题。函数的参数包括:盘子的数量`n`,起始柱子`start`,中间柱子`middle`,目标柱子`end`。在日志输出中,打印出每次移动的盘子编号和起始柱子到目标柱子的移动。 然后在`main`函数中,定义了盘子的数量`numDisks`以及起始、中间和目标柱子的名称。通过调用`hanoi`函数来解决汉诺塔问题。 运行该程序,它将会按照递归规则打印出相应的移动步骤,最终完成汉诺塔问题的求解。

相关推荐

最新推荐

recommend-type

汉诺塔递归算法--C语言

汉诺塔递归算法: 问题抽象  3个塔,n个碟子  初始:所有碟子放在1号塔,大的在底下,小的在上面  任务:把碟子移动到2号塔,顺序不变, 可用3号塔辅助  限制  每次只能移动一个碟子  总是大碟子...
recommend-type

C语言之整数划分问题(递归法)实例代码

主要介绍了C语言之整数划分问题(递归法)实例代码的相关资料,需要的朋友可以参考下
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

系统函数是1+5*z^(-1)+5*z^(-2)+z^(-3) ,给出Matlab中求该系统频率响应的代码

假设系统函数为H(z),则其频率响应为H(w),可以通过以下代码求解: ``` syms z w H = 1 + 5*z^(-1) + 5*z^(-2) + z^(-3); % 定义系统函数 Hw = subs(H, z, exp(1i*w)); % 将z用e^(jw)代替 Hw = simplify(Hw); % 化简 absHw = abs(Hw); % 求幅度响应 angleHw = angle(Hw); % 求相位响应 ``` 其中,`simplify`函数用于化简表达式,`abs`函数用于求绝对值,`angle`函数用于求相位。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

c语言中用leapyear函数输出2000年到2200年之间所有的闰年

可以使用以下代码实现: ```c #include <stdio.h> int leapyear(int year) { if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) { return 1; // 是闰年 } else { return 0; // 不是闰年 } } int main() { int year; for (year = 2000; year <= 2200; year++) { if (leapyear(yea