编写pytorch代码,time_val_set_normalized = scaler.transform(time_val_set),将time_val_set_normalized转换为浮点数张量
时间: 2023-10-06 09:06:04 浏览: 75
可以使用以下代码将time_val_set_normalized转换为浮点数张量:
```python
import torch
time_val_set_normalized_tensor = torch.tensor(time_val_set_normalized, dtype=torch.float32)
```
这将把time_val_set_normalized转换为浮点数张量并存储在time_val_set_normalized_tensor变量中。请注意,这假定您已经导入了PyTorch。
相关问题
transfomer股票价格预测代码
### 使用Transformer进行股票价格预测的Python代码实现
#### 导入库和初始化参数
为了使用Transformer模型进行股票价格预测,首先需要导入必要的库并设置一些基本参数:
```python
import torch
import torch.nn as nn
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
torch.manual_seed(0)
np.random.seed(0)
input_window = 20 # 输入窗口大小
output_window = 1 # 输出窗口大小
batch_size = 64 # 批量大小
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {device}')
```
这段代码设置了输入窗口、输出窗口和其他训练参数,并选择了计算设备[^1]。
#### 数据预处理
对于时间序列数据,通常会先对其进行标准化处理。这里采用`MinMaxScaler`来缩放数据至指定范围:
```python
scaler = MinMaxScaler(feature_range=(-1, 1))
data_normalized = scaler.fit_transform(data_frame.values.reshape(-1, 1))
def create_inout_sequences(input_data, tw):
inout_seq = []
L = len(input_data)
for i in range(L-tw):
train_seq = input_data[i:i+tw]
train_label = input_data[i+output_window:i+tw+output_window]
inout_seq.append((train_seq ,train_label))
return inout_seq
train_data = data_normalized[:int(len(data_normalized)*0.8)]
val_data = data_normalized[int(len(data_normalized)*0.8):]
train_sequence = create_inout_sequences(train_data, input_window)
val_sequence = create_inout_sequences(val_data, input_window)
```
此部分完成了对原始股价数据的归一化操作,并创建了适合喂入网络的数据集结构。
#### 构建Transformer模型
定义一个基于PyTorch框架下的自定义Transformer类,该类继承自`nn.Module`:
```python
class TransformerModel(nn.Module):
def __init__(self, feature_size=1, num_layers=3, dropout=0.1):
super().__init__()
self.model_type = 'Transformer'
self.src_mask = None
self
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)