matlab定义gan网络
时间: 2023-10-20 09:26:48 浏览: 213
matlab_GAN网络_对抗生成网络_GAN_Base_on_Matlab
5星 · 资源好评率100%
在 MATLAB 中,您可以使用深度学习工具箱中的函数来定义 GAN 网络。以下是一个简单的示例:
首先,导入必要的函数和数据集:
```matlab
% 导入深度学习工具箱
addpath('C:\Program Files\MATLAB\R2021a\toolbox\deeplearning');
% 加载 MNIST 数据集
[XTrain, YTrain] = digitTrain4DArrayData;
```
接下来,定义生成器和判别器网络:
```matlab
% 定义生成器网络
generator = [
imageInputLayer([1 1 100],'Normalization','none','Name','in')
fullyConnectedLayer(7*7*256,'Name','fc')
batchNormalizationLayer('Name','bn')
reluLayer('Name','relu')
transposedConv2dLayer(4,256,'Stride',2,'Padding','same','Name','tconv1')
batchNormalizationLayer('Name','bn1')
reluLayer('Name','relu1')
transposedConv2dLayer(4,128,'Stride',2,'Padding','same','Name','tconv2')
batchNormalizationLayer('Name','bn2')
reluLayer('Name','relu2')
transposedConv2dLayer(4,1,'Stride',2,'Padding','same','Name','tconv3')
tanhLayer('Name','tanh')];
% 定义判别器网络
discriminator = [
imageInputLayer([28 28 1],'Name','in')
convolution2dLayer(4,64,'Stride',2,'Padding','same','Name','conv1')
leakyReluLayer(0.2,'Name','lrelu1')
convolution2dLayer(4,128,'Stride',2,'Padding','same','Name','conv2')
batchNormalizationLayer('Name','bn')
leakyReluLayer(0.2,'Name','lrelu2')
convolution2dLayer(4,256,'Stride',2,'Padding','same','Name','conv3')
batchNormalizationLayer('Name','bn1')
leakyReluLayer(0.2,'Name','lrelu3')
fullyConnectedLayer(1,'Name','fc')
sigmoidLayer('Name','sigmoid')];
```
然后,使用 `gan` 函数将生成器和判别器组合成 GAN 网络:
```matlab
% 定义 GAN 网络
gan = gan(generator,discriminator);
```
最后,使用 `trainNetwork` 函数训练 GAN 网络:
```matlab
% 训练 GAN 网络
options = trainingOptions('adam','MaxEpochs',100,'MiniBatchSize',128,'Plots','training-progress');
[trainedGAN,stats] = trainNetwork(XTrain, gan, options);
```
阅读全文