transformer做时间序列预测python
时间: 2023-10-02 20:06:49 浏览: 173
Transformer模型可以用于时间序列预测,以下是一个使用Python和TensorFlow对时间序列进行预测的示例:
首先,导入必要的库和数据集:
```python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 生成数据集
def generate_time_series():
frequency1, frequency2, offset1, offset2 = np.random.rand(4) * 0.5
time = np.linspace(0, 1, 200)
series = offset1 + np.sin((frequency1 * 10 + time) * 2 * np.pi) * 0.2 + \
offset2 + np.sin((frequency2 * 20 + time) * 2 * np.pi) * 0.1
return series[..., np.newaxis].astype(np.float32)
# 划分数据集
data = generate_time_series()
train_data = data[:150]
val_data = data[150:175]
test_data = data[175:]
# 可视化数据集
plt.plot(np.arange(200), data)
plt.show()
```
接下来,构建Transformer模型:
```python
class Transformer(tf.keras.Model):
def __init__(self, num_layers, units, d_model, num_heads, dropout, name='transformer'):
super(Transformer, self).__init__(name=name)
self.encoder = tf.keras.layers.Dense(units, activation='relu')
self.decoder = tf.keras.layers.Dense(1)
self.pos_encoding = positional_encoding(200, d_model)
self.num_layers = num_layers
self.d_model = d_model
self.dec_layers = [DecoderLayer(d_model, num_heads, units, dropout, name='dec_layer_{}'.format(i)) for i in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(dropout)
def call(self, inputs, training=False):
# 编码器
x = self.encoder(inputs) # (batch_size, input_seq_len, d_model)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :tf.shape(x)[1], :]
# 解码器
for i in range(self.num_layers):
x = self.dec_layers[i](x, training=training)
x = self.decoder(x) # (batch_size, input_seq_len, 1)
return x
# 解码器层
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, units, dropout, name='dec_layer'):
super(DecoderLayer, self).__init__(name=name)
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(units, d_model)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(dropout)
self.dropout2 = tf.keras.layers.Dropout(dropout)
self.dropout3 = tf.keras.layers.Dropout(dropout)
def call(self, inputs, training=False):
# 第一层多头注意力
attn1 = self.mha1(inputs, inputs, inputs)
attn1 = self.dropout1(attn1, training=training)
out1 = self.layernorm1(inputs + attn1)
# 第二层多头注意力
attn2 = self.mha2(out1, out1, out1)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layernorm2(out1 + attn2)
# 前馈神经网络
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output, training=training)
out3 = self.layernorm3(out2 + ffn_output)
return out3
# 多头注意力机制
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, name='multi_head_attention'):
super(MultiHeadAttention, self).__init__(name=name)
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q):
batch_size = tf.shape(q)[0]
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))
output = self.dense(concat_attention)
return output
# 缩放点积注意力机制
def scaled_dot_product_attention(q, k, v):
matmul_qk = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
# 掩码
mask = tf.linalg.band_part(tf.ones_like(scaled_attention_logits), -1, 0)
scaled_attention_logits += (mask * -1e9)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v)
return output, attention_weights
# 位置编码
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model))
return pos * angle_rates
def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
# 将 sin 应用于数组中的偶数索引(indices);2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# 将 cos 应用于数组中的奇数索引;2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
# 前馈神经网络
def point_wise_feed_forward_network(d_model, diff):
return tf.keras.Sequential([
tf.keras.layers.Dense(diff, activation='relu'),
tf.keras.layers.Dense(d_model)
])
```
接下来,定义损失函数和优化器,并进行模型训练:
```python
# 损失函数
loss_object = tf.keras.losses.MeanSquaredError()
# 优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
# 指标
train_loss = tf.keras.metrics.Mean(name='train_loss')
val_loss = tf.keras.metrics.Mean(name='val_loss')
# 训练步骤
@tf.function
def train_step(inputs, targets):
with tf.GradientTape() as tape:
predictions = transformer(inputs, training=True)
loss = loss_object(targets, predictions)
gradients = tape.gradient(loss, transformer.trainable_variables)
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
train_loss(loss)
# 验证步骤
@tf.function
def val_step(inputs, targets):
predictions = transformer(inputs, training=False)
loss = loss_object(targets, predictions)
val_loss(loss)
# 训练模型
num_epochs = 2000
transformer = Transformer(num_layers=4, units=64, d_model=128, num_heads=8, dropout=0.1)
for epoch in range(num_epochs):
train_loss.reset_states()
val_loss.reset_states()
for input_series in range(len(train_data) - 10):
inputs = train_data[input_series:input_series + 10]
targets = train_data[input_series + 10]
train_step(inputs, targets)
for input_series in range(len(val_data) - 10):
inputs = val_data[input_series:input_series + 10]
targets = val_data[input_series + 10]
val_step(inputs, targets)
if epoch % 100 == 0:
print('Epoch {}, Train Loss: {:.4f}, Val Loss: {:.4f}'.format(epoch, train_loss.result(), val_loss.result()))
```
最后,使用训练好的模型进行预测并可视化:
```python
# 预测
predictions = []
for input_series in range(len(test_data) - 10):
inputs = test_data[input_series:input_series + 10]
prediction = transformer(inputs[np.newaxis, ...], training=False)[0, -1].numpy()
predictions.append(prediction)
# 可视化预测结果
plt.plot(np.arange(175, 200), np.array(predictions), label='Predictions')
plt.plot(np.arange(175, 200), test_data[10:], label='Real Data')
plt.legend()
plt.show()
```
这里的示例是基于一个简单的时间序列预测问题,你可以根据自己的数据集和需求进行调整。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)