bp神经网络预测模型l2正则化代码
时间: 2023-07-26 11:48:12 浏览: 139
下面是一个使用L2正则化的BP神经网络预测模型的代码示例(使用Python语言和PyTorch框架):
```python
import torch
import torch.nn as nn
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(10, 5)
self.fc2 = nn.Linear(5, 1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
net = Net()
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=0.01)
for epoch in range(100):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
l2_regularization = 0.0
for param in net.parameters():
l2_regularization += torch.norm(param, 2)
loss += 0.01 * l2_regularization
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))
```
这个代码示例中,我们定义了一个包含两个全连接层的神经网络模型,采用MSE损失函数和SGD优化器。在每次迭代中,我们对网络参数进行L2正则化,将L2范数乘以0.01加入到损失函数中,从而对网络参数进行约束。在训练过程中,我们通过计算L2范数来计算正则化项的值。
阅读全文