prim算法求最小生成树

时间: 2023-10-23 18:41:54 浏览: 39
Prim算法是一种经典的求解无向带权图最小生成树的算法,其基本思想为: 1. 选择一个起始点,将其加入生成树中; 2. 从生成树中已经存在的点出发,选择一条连接生成树中的点与未连接的点的最小权值的边,将其加入生成树中; 3. 重复第二步,直到所有的点都已连接或者生成了一棵生成树。 Prim算法的实现可以使用堆优化的贪心策略,对于每个未连接的点,维护一个到已连接点的最小权值,每次选择最小权值的点进行连接操作。 具体实现步骤如下: 1. 将起始点加入生成树中; 2. 将起始点与其它点的权值存入堆中,以权值为关键字进行堆排序; 3. 从堆中选择最小权值的点进行连接,加入生成树中; 4. 更新堆中未连接点的权值,如果新的权值更小则更新堆,重复步骤3-4,直到所有点都已连接。 Prim算法的时间复杂度为O(ElogV),其中E为边数,V为点数。
相关问题

prim算法求最小生成树m

以下是Prim算法求最小生成树的步骤和代码实现: 1. 朴素Prim算法步骤: - 选择一个起始顶点作为生成树的根节点。 - 将该顶点加入生成树的集合。 - 从生成树的集合中选择一条边,该边的两个顶点一个在生成树的集合中,一个不在。 - 选择这些边中权值最小的边,并将该边的另一个顶点加入生成树的集合。 - 重复上述步骤,直到生成树的集合包含所有顶点。 2. 堆优化Prim算法步骤: - 选择一个起始顶点作为生成树的根节点。 - 将该顶点加入生成树的集合,并将与该顶点相邻的边加入最小堆中。 - 从最小堆中选择一条权值最小的边,如果该边的另一个顶点不在生成树的集合中,则将该边加入生成树,并将与该顶点相邻的边加入最小堆中。 - 重复上述步骤,直到生成树的集合包含所有顶点。 3. 代码实现: - 朴素Prim的代码实现: ```python def prim(graph): n = len(graph) visited = [False] * n visited[0] = True edges = [] while len(edges) < n - 1: min_weight = float('inf') u, v = -1, -1 for i in range(n): if visited[i]: for j in range(n): if not visited[j] and graph[i][j] < min_weight: min_weight = graph[i][j] u, v = i, j edges.append((u, v)) visited[v] = True return edges ``` - 堆优化Prim的代码实现: ```python import heapq def prim(graph): n = len(graph) visited = [False] * n visited[0] = True edges = [] heap = [] for i in range(1, n): heapq.heappush(heap, (graph[0][i], 0, i)) while len(edges) < n - 1: weight, u, v = heapq.heappop(heap) if visited[v]: continue edges.append((u, v)) visited[v] = True for i in range(n): if not visited[i]: heapq.heappush(heap, (graph[v][i], v, i)) return edges ```

prim算法求最小生成树 matlab

好的,以下是使用Prim算法求最小生成树的Matlab代码: ```matlab function [MST, total_weight] = prim(adj_matrix) % adj_matrix: 邻接矩阵,表示图的连接情况和边权值 % MST: 最小生成树的邻接矩阵 % total_weight: 最小生成树的总权值 n = size(adj_matrix, 1); % 图中节点数 visited = false(1, n); % 标记节点是否已经被访问 key = inf(1, n); % 存储每个节点到最小生成树的距离 parent = zeros(1, n); % 存储每个节点在最小生成树中的父节点 % 从第一个节点开始构建最小生成树 key(1) = 0; parent(1) = -1; for i = 1:n-1 % 找到距离最小生成树最近的节点 min_key = inf; min_index = -1; for j = 1:n if ~visited(j) && key(j) < min_key min_key = key(j); min_index = j; end end visited(min_index) = true; % 更新与该节点相邻的节点到最小生成树的距离和父节点 for j = 1:n if ~visited(j) && adj_matrix(min_index, j) < key(j) key(j) = adj_matrix(min_index, j); parent(j) = min_index; end end end % 构建最小生成树的邻接矩阵 MST = zeros(n); for i = 2:n MST(i, parent(i)) = adj_matrix(i, parent(i)); MST(parent(i), i) = adj_matrix(i, parent(i)); end total_weight = sum(MST(:))/2; % 计算最小生成树的总权值 end ```

相关推荐

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

基于Springboot开发的分布式抽奖系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。