data_diff = data.diff().dropna() result_diff = adfuller(data_diff)解释
时间: 2024-06-07 11:10:08 浏览: 143
treediff-rs:提取任意数据结构之间的差异
这段代码是用来进行时间序列分析的,具体解释如下:
- `data_diff = data.diff().dropna()`:将原始时间序列数据进行差分,得到一阶差分数据。一阶差分数据是指当前时刻数据减去上一个时刻数据的差值,得到一个新的序列。这样做的目的是为了使数据的平稳性更好,便于进行后续的分析。
- `result_diff = adfuller(data_diff)`:对差分后的数据进行单位根检验,判断序列是否平稳。这里使用的是`adfuller()`函数,它可以计算出ADF检验统计量的值和p-value的值。如果p-value越小,说明序列越平稳。
总的来说,这段代码的作用是对时间序列数据进行差分,然后进行平稳性检验,以便后续进行数据分析和建模。
阅读全文