data_diff = data.diff().dropna() result_diff = adfuller(data_diff)解释
时间: 2024-06-07 15:10:08 浏览: 163
这段代码是用来进行时间序列分析的,具体解释如下:
- `data_diff = data.diff().dropna()`:将原始时间序列数据进行差分,得到一阶差分数据。一阶差分数据是指当前时刻数据减去上一个时刻数据的差值,得到一个新的序列。这样做的目的是为了使数据的平稳性更好,便于进行后续的分析。
- `result_diff = adfuller(data_diff)`:对差分后的数据进行单位根检验,判断序列是否平稳。这里使用的是`adfuller()`函数,它可以计算出ADF检验统计量的值和p-value的值。如果p-value越小,说明序列越平稳。
总的来说,这段代码的作用是对时间序列数据进行差分,然后进行平稳性检验,以便后续进行数据分析和建模。
相关问题
data = pd.read_csv(r'C:/Users/Ljimmy/Desktop/yyqc/peijian/销量数据副本3.csv', index_col=0, parse_dates=True) data.index = pd.to_datetime(data.index, unit='s') data = data.dropna() # 绘制原始时间序列图 plt.plot(data) plt.title('Original Time Series') plt.show() # 对时间序列进行平稳化处理 predictions_diff = pd.Series(data.fittedvalues, copy=True) predictions_diff_cumsum = predictions_diff.cumsum() predictions = pd.Series(data['y'].iloc[0], index=data.index) predictions = predictions.add(predictions_diff_cumsum, fill_value=0) # 绘制平稳化后的时间序列图 plt.plot(predictions) plt.title('Stabilized Time Series') plt.show(),如何修改成功运行AttributeError: 'DataFrame' object has no attribute 'fittedvalues'
根据提示信息,这段代码出错的原因是 DataFrame 对象没有属性 'fittedvalues'。这可能是因为在对时间序列进行平稳化处理时,使用了某个模型对数据进行了拟合,但是没有将拟合后的结果保存在 DataFrame 对象中。因此,需要检查代码中是否存在这样的语句:
```python
model = SomeModel()
result = model.fit(data)
```
如果存在这样的语句,就需要将拟合后的结果保存在 DataFrame 对象中,例如:
```python
model = SomeModel()
result = model.fit(data)
data['fittedvalues'] = result.fittedvalues
```
然后再运行原来的平稳化代码即可。如果以上方法无法解决问题,你可以提供更多的代码和错误信息,以便更好地定位问题。
import numpy import numpy as np import pandas as pd def read_asc(filepath): asc_file = pd.read_csv(filepath, skiprows=4, encoding="gbk", engine='python', sep=' ', delimiter=None, index_col=False, header=None, skipinitialspace=True) file = numpy.array(asc_file) # print(file) data = read_message(file) return filter_step_size(data) def read_message(file): data = [] for item in file: sh = item[4] if "107" == sh: data.append(item) data = numpy.array(data) return data # print(data) def filter_step_size(data): diff_data = np.diff(data[:, 0]) # print(diff_data) success_sum = 0 fail_sum = 0 for i in diff_data: if 0.090 < i < 0.110: success_sum += 1 else: fail_sum += 1 return success_sum, fail_sum if __name__ == '__main__': fail_path = "E:\package\databin 11-03-2022 3-35-39 pm Messages File_wu55D_1A8.asc" success = read_asc(fail_path)[0] fail = read_asc(fail_path)[1] print("步长通过数{}".format(success)) print("步长未通过数{}".format(fail)) 检查一下这段代码的错误
这段代码看起来没有明显的语法错误,但是可能存在逻辑问题。在函数`read_asc`中,调用了`read_message`函数来过滤数据,然后再调用`filter_step_size`函数来统计通过和未通过的步长数。这部分逻辑似乎是正确的。
但是在主程序部分,你两次调用了`read_asc`函数来获取成功和失败的步长数,这样会导致重复读取文件并进行相同的计算。你可以将`read_asc(fail_path)`的结果存储在一个变量中,然后使用这个变量来获取成功和失败的步长数。
此外,你在文件路径字符串中使用了反斜杠`\`,需要注意转义字符的问题。你可以使用原始字符串来处理这个问题,即在字符串前面加上`r`。
这是修改后的代码:
```python
if __name__ == '__main__':
fail_path = r"E:\package\databin 11-03-2022 3-35-39 pm Messages File_wu55D_1A8.asc"
result = read_asc(fail_path)
success = result[0]
fail = result[1]
print("步长通过数:{}".format(success))
print("步长未通过数:{}".format(fail))
```
希望对你有帮助!如果还有其他问题,请随时提问。
阅读全文
相关推荐















