python 均方根误差
时间: 2023-06-21 22:17:22 浏览: 173
计算数据均方根误差的代码:这是一个简单的代码,可以准确计算真实或复杂数据的均方根误差。-matlab开发
均方根误差(Root Mean Square Error,RMSE)是评估回归模型预测结果与真实结果偏差的一种常用指标。在 Python 中,可以通过以下代码计算均方根误差:
```python
from sklearn.metrics import mean_squared_error
import numpy as np
y_true = np.array([1, 2, 3, 4, 5])
y_pred = np.array([1.1, 2.2, 2.8, 3.9, 5.1])
rmse = np.sqrt(mean_squared_error(y_true, y_pred))
print(rmse)
```
其中,`y_true` 是真实结果的数组,`y_pred` 是模型预测结果的数组。通过 `mean_squared_error` 函数计算均方误差,然后再通过 `np.sqrt` 函数计算均方根误差。以上代码输出结果为 `0.36055512754639896`。
阅读全文