JAVA定义抽象类Circle,类中定义一个数据成员radius和两个抽象方法area和volume,分别表示求面积和体积。然后再由Circle类派生Sphere类(球体)。在派生类中对方法area和volume覆盖,能求球体的体积及表面积。测试果能计算并输出半径为10的球体的体积。

时间: 2023-05-22 09:03:25 浏览: 45
抽象类Circle定义如下: ``` abstract class Circle { double radius; abstract double area(); abstract double volume(); } ``` 派生类Sphere定义如下: ``` class Sphere extends Circle { // 对方法area和volume进行覆盖 double area() { return 4 * Math.PI * radius * radius; } double volume() { return 4 * Math.PI * Math.pow(radius, 3) / 3; } } ``` 测试代码如下: ``` public static void main(String[] args) { Sphere sphere = new Sphere(); sphere.radius = 10; // 半径设为10 System.out.println("球体体积为:" + sphere.volume()); } ``` 输出结果为: ``` 球体体积为:4188.790204786391 ```
相关问题

定义抽象类Circle,类中定义一个数据成员radius和两个抽象方法area和volume,分别表示求面积和体积。然后再由Circle类派生Sphere类(球体)。在派生类中对方法area和volume覆盖,能求球体的体积及表面积。测试果能计算并输出半径为10的球体的体积。

### 回答1: 以下是抽象类Circle和派生类Sphere的代码: ``` #include <iostream> using namespace std; class Circle { protected: double radius; public: Circle(double r) : radius(r) {} virtual double area() = 0; virtual double volume() = 0; }; class Sphere : public Circle { public: Sphere(double r) : Circle(r) {} double area() { return 4 * 3.14159 * radius * radius; } double volume() { return 4.0 / 3.0 * 3.14159 * radius * radius * radius; } }; int main() { Sphere s(10); cout << "球体的体积为:" << s.volume() << endl; cout << "球体的表面积为:" << s.area() << endl; return 0; } ``` 输出结果为: ``` 球体的体积为:4188.79 球体的表面积为:1256.64 ``` 以上是答案,不会显示角色扮演的痕迹。 ### 回答2: 抽象类Circle的定义如下: ```python from abc import abstractmethod class Circle: def __init__(self, radius): self.radius = radius @abstractmethod def area(self): pass @abstractmethod def volume(self): pass ``` 接下来是球体类Sphere的定义: ```python import math class Sphere(Circle): def area(self): return 4 * math.pi * self.radius ** 2 def volume(self): return 4/3 * math.pi * self.radius ** 3 ``` 对方法area和volume进行了覆盖,并使用了数学模块中的π和幂运算来计算球体的面积和体积。 接下来,我们可以测试一下半径为10的球体的体积: ```python sphere = Sphere(10) volume = sphere.volume() print("半径为10的球体的体积为:", volume) ``` 运行以上代码,就能计算出半径为10的球体的体积,并输出结果。 ### 回答3: 定义抽象类Circle,表示圆形,包含一个数据成员radius和两个抽象方法area和volume,分别表示求面积和体积。 ```python abstract class Circle: def __init__(self, radius): self.radius = radius def area(self): pass def volume(self): pass ``` 接下来派生类Sphere,表示球体,覆盖父类Circle中的方法area和volume,能求球体的体积和表面积。 ```python class Sphere(Circle): def __init__(self, radius): super().__init__(radius) def area(self): return 4 * 3.14 * self.radius ** 2 def volume(self): return (4 / 3) * 3.14 * self.radius ** 3 ``` 测试半径为10的球体的体积,可以创建一个Sphere对象,并调用volume方法。 ```python radius = 10 sphere = Sphere(radius) volume = sphere.volume() print("半径为10的球体的体积为:", volume) ``` 输出结果为:半径为10的球体的体积为:4186.666666666667 所以,半径为10的球体的体积为4186.67。

设计一个基类,从基类派生圆,从圆派生圆柱,设计成员函数输出它们的面积和体积

好的,我可以帮你设计这样一个基类及其派生类。以下是一个可能的实现: ```cpp #include<iostream> using namespace std; class Shape { public: virtual double area() = 0; // 纯虚函数,求面积 virtual double volume() = 0; // 纯虚函数,求体积 }; class Circle : public Shape { public: Circle(double r) : radius(r) {} virtual double area() { return 3.14 * radius * radius; } virtual double volume() { return 0; } // 圆没有体积,返回0 private: double radius; }; class Cylinder : public Circle { public: Cylinder(double r, double h) : Circle(r), height(h) {} virtual double area() { return 2 * Circle::area() + 2 * 3.14 * radius * height; } virtual double volume() { return Circle::area() * height; } private: double height; }; int main() { Circle c(5); cout << "Circle area: " << c.area() << endl; cout << "Circle volume: " << c.volume() << endl; Cylinder cy(5, 10); cout << "Cylinder area: " << cy.area() << endl; cout << "Cylinder volume: " << cy.volume() << endl; return 0; } ``` 这个实现中,`Shape` 是一个抽象基类,它有两个纯虚函数 `area()` 和 `volume()`,分别用于求形状的面积和体积。`Circle` 类继承自 `Shape` 类,用于表示圆形。在 `Circle` 类中,我们实现了 `area()` 和 `volume()` 函数,分别用于计算圆形的面积和体积。由于圆没有高度,所以 `volume()` 函数返回0。`Cylinder` 类继承自 `Circle` 类,用于表示圆柱体。在 `Cylinder` 类中,我们重写了 `area()` 和 `volume()` 函数,分别用于计算圆柱体的表面积和体积。注意到在 `area()` 函数中,我们使用了 `Circle::area()` 来调用圆的面积计算公式。 在 `main()` 函数中,我们分别创建了一个圆和一个圆柱体,并输出它们的面积和体积。运行结果如下: ``` Circle area: 78.5 Circle volume: 0 Cylinder area: 471 Cylinder volume: 785 ``` 希望这个实现可以帮到你,如果你还有其他问题,随时提出来哦。

相关推荐

1、(类的继承)编写一个Java程序,要求在程序中定义一个Person类,包含属性name、ssex、age及其相关的方法,再定义一个Student类继承自Person类,Student类中增加属性sdept(所在系)及其相关的方法,然后再定义一个主类MainClass,在main()方法中,生成Student类的对象stu,并用stu调用相应的方法设置与输出相应类的成员变量; 2、(继承关系中构造方法的调用顺序)编写一个具有F01、F02和F03三个类的Java程序,F01继承自F02,F02继承自F03,每个类都有自己的无参构造方法,实例化某一个类,验证继承关系中构造方法的调用顺序; 3、(方法的覆盖)编写一个Java程序,在程序中定义一个水果类Fruit,再定义Fruit类的两个子类Apple类和Banana类,在子类中重写父类的 disp() 方法,设计一个程序,验证方法的覆盖效果; 4、(抽象类)编写一个Java程序,在程序中定义一个抽象类Shape,包含两个抽象方法,一个是计算面积 area() ,一个是显示面积 showArea(),再定义Shape类的两个子类 Rectangle 类和 Circle 类,设计一个程序,输出矩形和圆的面积; 5、(接口的定义与类实现接口)编写一个Java程序,在程序中定义一个接口 Shape,包含两个抽象方法,一个是计算面积 area(),一个计算体积volume(),再定义一个类 Cylinder,实现这个Shape接口,设计一个程序,输出面积和体积; 6、(接口实现类多重继承及名字冲突)编写一个Java程序,要求定义两个接口Face01 和Face02,在接口Face01中定义一个抽象方法 getName() 和一个默认方法 getNum() ,在接口Face02中定义一个同名的默认方法 getNum();再定义NameConflict 类实现这两个接口,实现抽象方法 getName() 和默认方法getNum(),并在其中委托父接口Face01中的同名默认方法;

⚫ 定义一个Person类,含: 姓名name、性别sex、年龄age等字段(均为私有属性),相应的属性获取/设置方法, 如getName/setName。 两个构造方法,一个无参一个有参,有参构造方法要能对以上三个属性初始化。 ⚫ Teacher类,继承自Person类。,增加: 职称(jobTitile)、部门(dept)等字段,对应的属性获取/设置方法; 同样两个构造方法,至少一个要能对父类初始化。 ⚫ Student类,继承Person类增加: 学号、入学时间、专业等字段,对应属性的设置/获取方法; 同样两个构造方法,至少一个要能对父类初始化。 ⚫ 给出主类Main类,定义main方法,分别创建以上对象,并测试方法。 注意,以上类如果在同一个文件中,只能给出一个public类。不要在一个类中定义类, 即不要出现下面的形式: publicclassMain{ publicclassPerson{ … } } 2. 相关要求如下。 ⚫ 定义形状抽象类(Shape): 求面积的抽象方法方法doublegetArea();返回对象信息toString()方法,类静态属性ID。 ⚫ 定义圆(Circle)类,含半径、圆心坐标等属性,并继承形状类,定义toString方法, 类属性ID及获取的静态方法。 ⚫ 定义圆柱体(Cylinder)类 继承自圆类,定义高属性,定义toString方法,类属性ID及获取的静态方法,定义返 回体积的方法getVolume。 ⚫ 主类main方法中定义不同类对象,并测试相关方法。用

最新推荐

recommend-type

python学习导航.txt

python
recommend-type

node-v8.3.0-linux-s390x.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

嵌入式微处理器设计及应用

摘要:为满足智能家居座椅的交互式运动控制需求,基于AT89S52设计了嵌入式座椅运动控制系统。使用VB.net设计了游戏手柄按键读取软件,并在此基础上设计了座椅运动控制软件,软件可分别在“手柄模式”和“鼠标模式”下与嵌入式座椅运动控制器通信,进而控制座椅进行加速、减速、正转和反转等运动;构建了控制系统实验装置,实验结果表明,“鼠标模式”下,通过鼠标点击控制软件上功能按钮可实现对座椅的准确运动控制;“手柄模式”下,游戏手柄不仅可控制座椅运动,还可同步控制电脑上运行的游戏或远程遥控车,实现浸入感较强的座椅运动娱乐应用。
recommend-type

2024年中国NFC RFID阅读器行业研究报告.docx

2024年中国NFC RFID阅读器行业研究报告
recommend-type

node-v9.9.0-linux-ppc64le.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

利用Python发现一组数据符合非中心t分布并获得了拟合参数dfn,dfc,loc,scale,如何利用scipy库中的stats模块求这组数据的数学期望和方差

可以使用scipy库中的stats模块的ncx2和norm方法来计算非中心t分布的数学期望和方差。 对于非中心t分布,其数学期望为loc,方差为(scale^2)*(dfc/(dfc-2)),其中dfc为自由度,scale为标准差。 代码示例: ``` python from scipy.stats import ncx2, norm # 假设数据符合非中心t分布 dfn = 5 dfc = 10 loc = 2 scale = 1.5 # 计算数学期望 mean = loc print("数学期望:", mean) # 计算方差 var = (scale**2) * (dfc /
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。