def sigmoid(self, x: np.ndarray)-> np.ndarray: ''' Compute sigmoid activation function value by f(x*w) Parameters: x is data input with artificial features. x is a two dimensional numpy array. Return: one dimensional numpy array ''' ### write your code below ### # first compute inner product between x and self.w # sencond, compute logistic function value of x*self.w return ### write your code above ###。请帮我完成需要填写的代码
时间: 2024-02-10 14:17:16 浏览: 95
好的,根据您提供的代码,以下是需要填写的代码:
```python
# compute sigmoid activation function value
z = np.dot(x, self.w)
sigmoid = 1 / (1 + np.exp(-z))
return sigmoid
```
以上代码会计算输入数据和权重向量的内积,然后将其作为自变量带入 sigmoid 函数中,得到激活函数的输出值。
希望对您有帮助!
相关问题
def gru_cell(self, x, state): # Compute gates x_and_state = torch.cat([x, state], dim=1) update_gate = self.conv_update(x_and_state) reset_gate = self.conv_reset(x_and_state) # Add bias to initialise gate as close to identity function update_gate = torch.sigmoid(update_gate + self.gru_bias_init) reset_gate = torch.sigmoid(reset_gate + self.gru_bias_init) # Compute proposal state, activation is defined in norm_act_config (can be tanh, ReLU etc) state_tilde = self.conv_state_tilde(torch.cat([x, (1.0 - reset_gate) * state], dim=1)) output = (1.0 - update_gate) * state + update_gate * state_tilde return output函数是怎么一步步计算的?
这个函数实现了GRU(Gated Recurrent Unit)的一个时间步的计算过程,以下是它的具体实现过程:
1. 将输入数据x和上一时刻的状态state按照列方向(dim=1)进行拼接,得到x_and_state。
2. 将x_and_state输入到两个卷积层中,分别计算更新门(update_gate)和重置门(reset_gate)。
3. 给计算得到的更新门和重置门加上一个初始化偏置(gru_bias_init)并通过sigmoid激活函数进行归一化,得到update_gate和reset_gate。
4. 根据重置门计算重置后的上一时刻状态,即(1.0 - reset_gate) * state。
5. 将x和上一时刻状态(经过重置门的作用后的状态)按照列方向进行拼接,得到x_and_state_reset。
6. 将x_and_state_reset输入到另一个卷积层中,计算出候选状态state_tilde。
7. 根据更新门和候选状态计算当前时刻的状态output,即(1.0 - update_gate) * state + update_gate * state_tilde。
8. 返回计算得到的当前时刻状态output。
import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import roc_auc_score from sklearn.utils.class_weight import compute_class_weight # 读取数据 data = pd.read_csv('database.csv') # 数据预处理 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values scaler = StandardScaler() X = scaler.fit_transform(X) # 特征选择 pca = PCA(n_components=10) X = pca.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train) # 构建CNN模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(10, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) model.fit(X_train, y_train,class_weight=class_weights,epochs=100, batch_size=64, validation_data=(X_test, y_test)) # 预测结果 y_pred = model.predict(X_test) #检验值 accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) print(auc) print("Accuracy:", accuracy) print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred)) print('Classification Report:\n', classification_report(y_test, y_pred))
这是一个使用卷积神经网络(CNN)进行二分类的模型,数据经过了标准化和PCA特征选择的预处理。模型使用了一个卷积层(Conv1D)和一个池化层(MaxPooling1D),然后通过一个全连接层(Dense)输出最终结果。训练过程中使用了类别权重(class_weights)来平衡样本不均衡问题。最终输出了预测值的准确率(accuracy)、ROC曲线下面积(auc)、混淆矩阵(confusion_matrix)和分类报告(classification_report)。
阅读全文