如何解决Traceback (most recent call last): File "C:\Users\马斌\Desktop\NGSIM_data_processing\80s\lstmtest.py", line 42, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing\_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (611,1) doesn't match the broadcast shape (611,2)
时间: 2023-06-30 07:07:40 浏览: 108
这个错误的原因是因为你的训练预测的结果(train_predict)的形状是(611,1),而你的缩放器(scaler)的形状是(611,2)。这意味着你的数组的维度不匹配,无法广播。
要解决这个问题,你可以尝试以下几种方法:
1. 确保你的训练数据(train_data)的形状与缩放器(scaler)的形状匹配。如果不匹配,你可以尝试调整训练数据的形状或重新训练缩放器。
2. 如果你确定你的训练数据和缩放器的形状是匹配的,你可以尝试在调用inverse_transform()方法之前,使用reshape()方法将train_predict的形状改变为(611,2)。
3. 另外一个解决方法是在初始化缩放器(scaler)时,将参数fit_inverse_transform设置为True,这将允许你使用inverse_transform()方法来逆转缩放操作。
希望能对你有所帮助。
相关问题
C:\Users\马斌\Desktop\NGSIM_data_processing\80s\lstmtest.py:31: MatplotlibDeprecationWarning: Support for FigureCanvases without a required_interactive_framework attribute was deprecated in Matplotlib 3.6 and will be removed two minor releases later. plt.plot(history.history['loss']) C:\Users\马斌\Desktop\NGSIM_data_processing\80s\lstmtest.py:37: MatplotlibDeprecationWarning: Support for FigureCanvases without a required_interactive_framework attribute was deprecated in Matplotlib 3.6 and will be removed two minor releases later. plt.show() 20/20 [==============================] - 0s 832us/step 9/9 [==============================] - 0s 0s/step Traceback (most recent call last): File "C:\Users\马斌\Desktop\NGSIM_data_processing\80s\lstmtest.py", line 42, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing\_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (611,1) doesn't match the broadcast shape (611,2)
这个错误的原因是在进行逆变换时,输入的数组的形状与原始数据的形状不匹配。具体来说,你的 `train_predict` 数组的形状为 `(611, 1)`,而 `scaler.inverse_transform()` 函数期望的形状是 `(611, 2)`。这可能是因为你在训练模型时只使用了单个特征,但是在进行预测时却使用了多个特征。
你可以检查一下在训练模型时使用的特征数量是否与进行预测时使用的特征数量一致。如果不一致,你需要在进行预测时只使用与训练模型时相同的特征。如果特征数量相同,那么可能是在数据处理的过程中出现了错误,你需要仔细检查数据的形状和处理方法。
D:\python\python3.9.5\python.exe C:/Users/马斌/Desktop/NGSIM_data_processing/80s/x-y.py Traceback (most recent call last): File "C:\Users\马斌\Desktop\NGSIM_data_processing\80s\x-y.py", line 6, in <module> data = pd.read_csv('车辆:1499序:2结果数据换算单位.csv') File "D:\python\python3.9.5\lib\site-packages\pandas\io\parsers\readers.py", line 912, in read_csv return _read(filepath_or_buffer, kwds) File "D:\python\python3.9.5\lib\site-packages\pandas\io\parsers\readers.py", line 577, in _read parser = TextFileReader(filepath_or_buffer, **kwds) File "D:\python\python3.9.5\lib\site-packages\pandas\io\parsers\readers.py", line 1407, in __init__ self._engine = self._make_engine(f, self.engine) File "D:\python\python3.9.5\lib\site-packages\pandas\io\parsers\readers.py", line 1679, in _make_engine return mapping[engine](f, **self.options) File "D:\python\python3.9.5\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 93, in __init__ self._reader = parsers.TextReader(src, **kwds) File "pandas\_libs\parsers.pyx", line 548, in pandas._libs.parsers.TextReader.__cinit__ File "pandas\_libs\parsers.pyx", line 637, in pandas._libs.parsers.TextReader._get_header File "pandas\_libs\parsers.pyx", line 848, in pandas._libs.parsers.TextReader._tokenize_rows File "pandas\_libs\parsers.pyx", line 859, in pandas._libs.parsers.TextReader._check_tokenize_status File "pandas\_libs\parsers.pyx", line 2017, in pandas._libs.parsers.raise_parser_error UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb1 in position 0: invalid start byte Process finished with exit code 1
这是一个UnicodeDecodeError错误,意味着Python无法使用UTF-8编码正确解码文件。可能是因为文件编码与Python默认编码不同,或者文件本身出现了无法解码的字符。
你可以尝试指定文件编码来解决此问题。例如,如果文件编码为GB2312,可以使用以下代码读取文件:
```python
import pandas as pd
data = pd.read_csv('车辆:1499序:2结果数据换算单位.csv', encoding='GB2312')
```
如果指定了正确的编码仍然无法解决问题,那么文件内容可能存在其他问题,需要进一步检查和处理。
阅读全文