解释下这段代码:R=zeros(2max_tau+1,L); for tau=-max_tau:max_tau x1=x; x2=wshift(1, x, tau); R(tau+1+max_tau,:)=exp(-1ipi*((0:L-1)/L)*tau).*fft(para.exp(-(x1-x2).^2/(2kernelsize^2))/L);%!!! % r( tau + max_tau + 1,:)=para.exp(-(x1-x2).^2/(2kernelsize^2))/L; endaS=(fft(R)); aS=aS(:,1:L_upper); PSD1=abs(aS(:,1));

时间: 2023-10-30 08:08:27 浏览: 137
这段代码是计算信号的自相关函数以及功率谱密度(PSD)的过程。 首先,创建一个大小为 `(2*max_tau+1, L)` 的全零矩阵 `R`,其中 `max_tau` 是时间延迟的最大值,而 `L` 是信号的长度。 然后,通过一个循环遍历时间延迟 `tau`,在每次循环中进行以下操作: 1. 将信号 `x` 复制给 `x1`。 2. 使用 `wshift` 函数将 `x` 沿着时间轴以延迟 `tau` 的方式进行位移,并将结果赋值给 `x2`。 3. 计算权重系数 `exp(-1i*pi*((0:L-1)/L)*tau)`,其中 `(0:L-1)/L` 是一个表示频率的向量,乘以 `tau` 后与时间延迟匹配。 4. 计算自相关函数的傅里叶变换。这里使用了 `para.exp(-(x1-x2).^2/(2*kernelsize^2))/L` 这个信号的高斯函数,并将结果进行傅里叶变换。 5. 将得到的自相关函数存储在矩阵 `R` 的第 `(tau+1+max_tau)` 行中。 接下来,进行矩阵 `R` 的傅里叶变换,将结果存储在变量 `endaS` 中。 然后,根据需要截取 `aS` 的部分(例如,前 `L_upper` 个元素),并将其存储在变量 `PSD1` 中。这里使用了 `abs(aS(:,1))`,即取傅里叶变换结果的模值,作为功率谱密度的估计。 总结起来,这段代码通过计算信号的自相关函数和功率谱密度,提取信号的频谱特征。
相关问题

max_steps = 64 features = torch.zeros((T - tau - max_steps + 1, tau + max_steps)) # 列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1]

这段代码是在构建一个特征矩阵,其中列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1),而列i(i>=tau)是来自(i-tau+1)步的预测,其时间步从(i)到(i+T-tau-max_steps+1)。具体来说,这段代码通过循环遍历tau个时间步,将每个时间步对应的观测数据和预测数据分别填充到特征矩阵的相应位置上,最终得到一个大小为(T-tau-max_steps+1)×(tau+max_steps)的特征矩阵。其中,tau表示观测数据的时间步长,T表示序列的总时间步长,max_steps表示预测的步数。这段代码适用于序列预测问题,可以将序列分成观测部分和预测部分,通过构建特征矩阵,将序列转化为机器学习中常用的输入输出形式。

举个详细的例子,max_steps = 64 features = torch.zeros((T - tau - max_steps + 1, tau + max_steps)) # 列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1] # 列i(i>=tau)是来自(i-tau+1)步的预测,其时间步从(i)到(i+T-tau-max_steps+1) for i in range(tau, tau + max_steps): features[:, i] = net(features[:, i - tau:i]).reshape(-1) steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x', legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000], figsize=(6, 3))

好的,让我来举个详细的例子。 假设我们有一个长度为T的时间序列,其中包含了一些观测数据和一些需要预测的数据。我们希望使用一个神经网络模型来对未来的max_steps步进行预测,并且我们希望可视化预测结果。 首先,我们需要将序列分成观测部分和预测部分。我们可以选择一个观测数据的时间步长tau,然后从序列的第1个时间步开始,每个tau个时间步选择一个观测数据点,构建出一个特征矩阵。具体来说,我们可以使用以下代码: ```python max_steps = 64 features = torch.zeros((T - tau - max_steps + 1, tau + max_steps)) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1] for i in range(tau, tau + max_steps): features[:, i] = net(features[:, i - tau:i]).reshape(-1) ``` 这段代码首先创建了一个大小为(T-tau-max_steps+1)×(tau+max_steps)的特征矩阵,其中包含了观测数据和预测数据。然后,通过循环遍历tau个时间步,将每个时间步对应的观测数据填充到特征矩阵的相应位置上。接着,从第tau步开始,循环遍历max_steps个时间步,将每个时间步对应的预测数据填充到特征矩阵的相应位置上。预测数据是通过使用预先定义的神经网络模型net,对特征矩阵中第i-tau+1步到第i步的数据进行预测得到的。 最后,我们可以使用d2l.plot函数,将不同步数的预测结果可视化出来。具体来说,我们可以使用以下代码: ```python steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x', legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000], figsize=(6, 3)) ``` 这段代码首先定义了一个steps列表,其中包含了需要预测的步数。然后,使用d2l.plot函数将不同步数的预测结果可视化出来。具体来说,d2l.plot函数将预测结果与真实结果在时间轴上进行比较,以便观察预测结果的准确性和波动情况。其中,第一个参数是一个列表,包含了不同步数对应的时间序列,第二个参数是一个列表,包含了不同步数对应的预测结果,第三个参数是x轴的标签,第四个参数是y轴的标签,legend参数指定了图例名称,xlim参数指定了x轴的范围,figsize参数指定了图像的大小。
阅读全文

相关推荐

% 定义一些常量fft_size = 2048;hop_size = fft_size/4;min_freq = 80;max_freq = 1000;% 读取音频文件filename = 'example.aac';[x, Fs] = audioread(filename);% 计算音高[f0, ~] = yin(x, Fs, fft_size, hop_size, min_freq, max_freq);f0 = medfilt1(f0, 5); % 中值滤波midi = freq2midi(f0);% 计算主音调[~, max_idx] = max(histcounts(midi, 1:128));dominant_note = max_idx - 1;% 输出结果fprintf('主音调:%.2f Hz\n', midi2freq(dominant_note));function [f0, rms_energy] = yin(x, fs, fft_size, hop_size, min_freq, max_freq)% YIN算法计算音频信号的基频% 初始化变量n_frames = floor((length(x)-fft_size)/hop_size) + 1;f0 = zeros(n_frames, 1);rms_energy = zeros(n_frames, 1);% 计算自相关函数x = x(:);x = [x; zeros(fft_size, 1)];acf = xcorr(x, fft_size, 'coeff');acf = acf(ceil(length(acf)/2):end);% 计算差值函数d = zeros(fft_size, n_frames);for i = 1:n_frames frame = x((i-1)*hop_size+1:(i-1)*hop_size+fft_size); for tau = 1:fft_size d(tau, i) = sum((frame(1:end-tau) - frame(1+tau:end)).^2); endend% 计算自相关函数的倒数acf_recip = acf(end:-1:1);acf_recip(1) = acf_recip(2);acf_recip = acf_recip.^(-1);% 计算累积平均能量running_sum = 0;for i = 1:n_frames running_sum = running_sum + sum(x((i-1)*hop_size+1:(i-1)*hop_size+fft_size).^2); rms_energy(i) = sqrt(running_sum/fft_size);end% 计算基频for i = 1:n_frames r = acf_recip./(acf(i:end).*acf_recip(1:end-i+1)); r(1:i) = 0; r(max_freq/fs*fft_size+1:end) = 0; [~, j] = min(r(min_freq/fs*fft_size+1:max_freq/fs*fft_size)); f0(i) = fs/j;endendfunction midi = freq2midi(freq)% 将频率转换为MIDI码midi = 12*log2(freq/440) + 69;endfunction freq = midi2freq(midi)% 将MIDI码转换为频率freq = 440*2^((midi-69)/12);end对于此运算,数组的大小不兼容。 出错 yin (第 26 行) r = acf_recip./(acf(i:end).*acf_recip(1:end-i+1)); 出错 untitled2 (第 8 行) [f0, ~] = yin(x, Fs, fft_size, hop_size, min_freq, max_freq);请修改以上错误

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

signalnumber=10000;%信号长度 uncertainsignal=rand(1,signalnumber); signal=sign(uncertainsignal-0.5);%映射星座图 h1=comm.RayleighChannel(ts,fd,tau1,pdf1);%瑞利信道 h1 h1.StorePathGains=1;%瑞利信道各多径加权系数标志 filter(h1,signal);%瑞利信道作用于信号 h1PathGains=sqrt(1/M).*sum(h1.PathGains,2);%每一个信号点的平均加权系数 h1PathGains=h1PathGains';%转置 signal1=h1PathGains.*signal; h2=comm.RayleighChannel(ts,fd,tau2,pdf2);%瑞利信道 h2 h2.StorePathGains=1; filter(h2,signal); h2PathGains=sqrt(1/N).*sum(h2.PathGains,2); h2PathGains=h2PathGains'; signal2=h2PathGains.*signal; mu=0;%噪声均值 for k = 1:length(Eb_N0_dB) SNR=10^(0.1*Eb_N0_dB(k)); N0=Eb/SNR; sigma=sqrt(N0/2);%求标准差 noise=mu+sigma*randn(1,signalnumber);%高斯白噪声 signal1_noise=signal1+noise; signal2_noise=signal2+noise; %最大比值合并 n = 0; % 假设 n 是一个已知的值 error_probability2 = zeros(1, n); n = 0; % 假设 n 是一个已知的值 error_probability3 = zeros(1, n); n = 0; % 假设 n 是一个已知的值 error_probability1 = zeros(1, n); n = 0; % 假设 n 是一个已知的值 judge_signal2 = zeros(1, n); n = 0; % 假设 n 是一个已知的值 judge_signal1 = zeros(1, n); n = 0; % 假设 n 是一个已知的值 judge_signal3 = zeros(1, n); MRC_signal=signal1_noise.*conj(h1PathGains)+signal2_noise.*conj(h2PathGains); judge_signal2(real(MRC_signal)<=0)=-1; judge_signal2(real(MRC_signal)>0)=+1; errorbit_number2=length(find(judge_signal2-signal)); error_probability2(k)=errorbit_number2/length(signal); %选择式合并 SC if sum(abs(signal1_noise)) > sum(abs(signal2_noise)) choose_signal=real(signal1_noise./h1PathGains); else choose_signal=real(signal2_noise./h2PathGains); end judge_signal1(choose_signal<=0)=-1; judge_signal1(choose_signal>0)=+1; errorbit_number1=length(find(judge_signal1-signal)); error_probability1(k)=errorbit_number1/length(signal); %等增益合并 EGC_signal=signal1_noise.*conj(h1PathGains)./abs(h1PathGains)+signal2_noise.*con; j(h2PathGains)./abs(h2PathGains); judge_signal3(real(EGC_signal)<=0)=-1; judge_signal3(real(EGC_signal)>0)=+1; errorbit_number3=length(find(judge_signal3-signal)); error_probability3(k)=errorbit_number3/length(signal); end hold on semilogy(Eb_N0_dB,error_probability,'*');%经过 AWGN 信道的误码率曲线 semilogy(Eb_N0_dB,error_probability1,'o');%选择式合并的误码率曲线 semilogy(Eb_N0_dB,error_probability2,'s');%最大比值合并的误码率曲线 semilogy(Eb_N0_dB,error_probability3,'+');%等增益合并的误码率曲线 xlabel('信噪比(dB)'); ylabel('误码率'); title('BPSK 瀑布图'); legend('AWGN','SC','MRC','EGC'); hold off

最新推荐

recommend-type

Python基于yolo的健身姿势检测与姿态矫正建议系统源代码+使用说明

Python基于yolo的健身姿势检测与姿态矫正建议系统源代码+使用说明 model:保存模型参数 config.yaml:配置文件 resource:输入文件夹,具有固定的目录结构(动作-视角-标准/错误点) output:输出文件夹,保持和resource相同的目录结构 main.py:实现resource2output方法,将resource中的资源全部提取数据并输出(csv格式)到output的相应位置 tasks:任务文件夹,对于不同的健身任务,分别实现标准性判别方法 keypoint.py:是对yolo模型返回的节点进行对象封装,其中的Keypoint对象封装了返回结果(是一个数组)中各关节位置对应数组中的位置,这样就不需要通过下标直接获取节点,而是通过例如get("l_elbow")的实例方法获取节点 pull_up.py:为具体健身任务实现标准性判别方法,这里是对引体向上的处理 task_processor.py由于main.py是在对resource文件夹中所有资源进行处理,不同的方法将对应不同的处理函数,task_processor.py中实现了TaskProces
recommend-type

Android圆角进度条控件的设计与应用

资源摘要信息:"Android-RoundCornerProgressBar" 在Android开发领域,一个美观且实用的进度条控件对于提升用户界面的友好性和交互体验至关重要。"Android-RoundCornerProgressBar"是一个特定类型的进度条控件,它不仅提供了进度指示的常规功能,还具备了圆角视觉效果,使其更加美观且适应现代UI设计趋势。此外,该控件还可以根据需求添加图标,进一步丰富进度条的表现形式。 从技术角度出发,实现圆角进度条涉及到Android自定义控件的开发。开发者需要熟悉Android的视图绘制机制,包括但不限于自定义View类、绘制方法(如`onDraw`)、以及属性动画(Property Animation)。实现圆角效果通常会用到`Canvas`类提供的画图方法,例如`drawRoundRect`函数,来绘制具有圆角的矩形。为了添加图标,还需考虑如何在进度条内部适当地放置和绘制图标资源。 在Android Studio这一集成开发环境(IDE)中,自定义View可以通过继承`View`类或者其子类(如`ProgressBar`)来完成。开发者可以定义自己的XML布局文件来描述自定义View的属性,比如圆角的大小、颜色、进度值等。此外,还需要在Java或Kotlin代码中处理用户交互,以及进度更新的逻辑。 在Android中创建圆角进度条的步骤通常如下: 1. 创建自定义View类:继承自`View`类或`ProgressBar`类,并重写`onDraw`方法来自定义绘制逻辑。 2. 定义XML属性:在资源文件夹中定义`attrs.xml`文件,声明自定义属性,如圆角半径、进度颜色等。 3. 绘制圆角矩形:在`onDraw`方法中使用`Canvas`的`drawRoundRect`方法绘制具有圆角的进度条背景。 4. 绘制进度:利用`Paint`类设置进度条颜色和样式,并通过`drawRect`方法绘制当前进度覆盖在圆角矩形上。 5. 添加图标:根据自定义属性中的图标位置属性,在合适的时机绘制图标。 6. 通过编程方式更新进度:在Activity或Fragment中,使用自定义View的方法来编程更新进度值。 7. 实现动画:如果需要,可以通过Android的动画框架实现进度变化的动画效果。 标签中的"Android开发"表明,这些知识点和技能主要面向的是Android平台的开发人员。对于想要在Android应用中实现自定义圆角进度条的开发者来说,他们需要具备一定的Android编程基础,并熟悉相关的开发工具和库。 在"RoundCornerProgressBar-master"压缩包文件的文件名称列表中,我们可以推测这个资源包含了完整的项目代码,包括源代码、资源文件、布局文件、可能的示例代码以及必要的文档说明。开发者通过下载和解压缩这个包,可以得到一个完整的项目,从而可以直接查看代码实现细节,或是将其集成到自己的项目中。 最终,对于希望使用"Android-RoundCornerProgressBar"的开发者,关键在于理解自定义View的创建过程、圆角图形的绘制技术,以及如何在Android应用中集成和使用这些自定义控件。通过上述知识点的学习和实践,开发者能够掌握在Android应用中创建美观且功能丰富的用户界面所需的技能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言lattice包实战】:从案例到技巧,图形制作不再难

![R语言数据包使用详细教程lattice](http://pfister.ee.duke.edu/images/Nguyen-arxiv11-fig2.jpg) # 1. R语言与lattice包概述 R语言作为统计分析领域内广泛应用的编程语言,凭借其强大的图形功能而受到数据科学家的青睐。在R语言中,lattice包是绘图系统的重要组成部分,它基于trellis图形系统设计,能够高效地创建多变量条件图。本章节将引导读者对lattice包有一个初步的了解,并概述其功能和应用范围。 ## 1.1 R语言中的图形系统 R语言提供了一系列的图形系统,基础图形系统(base graphics)是其
recommend-type

输入正整数n.打出长度为n的菱形

好的,以下是打印菱形的代码实现: ``` #include <stdio.h> #include <stdlib.h> int main() { int n, i, j; printf("请输入一个正整数n:"); scanf("%d", &n); if(n % 2 == 0) { // 如果输入的n是偶数,将其加1变成奇数 n++; } for(i = 0; i < n / 2 + 1; i++) { for(j = 0; j < n / 2 - i; j++) { printf(
recommend-type

mui框架实现带侧边栏的响应式布局

资源摘要信息:"mui实现简单布局.zip" mui是一个基于HTML5的前端框架,它采用了类似Bootstrap的语义化标签,但是专门为移动设备优化。该框架允许开发者使用Web技术快速构建高性能、可定制、跨平台的移动应用。此zip文件可能包含了一个用mui框架实现的简单布局示例,该布局具有侧边栏,能够实现首页内容的切换。 知识点一:mui框架基础 mui框架是一个轻量级的前端库,它提供了一套响应式布局的组件和丰富的API,便于开发者快速上手开发移动应用。mui遵循Web标准,使用HTML、CSS和JavaScript构建应用,它提供了一个类似于jQuery的轻量级库,方便DOM操作和事件处理。mui的核心在于其强大的样式表,通过CSS可以实现各种界面效果。 知识点二:mui的响应式布局 mui框架支持响应式布局,开发者可以通过其提供的标签和类来实现不同屏幕尺寸下的自适应效果。mui框架中的标签通常以“mui-”作为前缀,如mui-container用于创建一个宽度自适应的容器。mui中的布局类,比如mui-row和mui-col,用于创建灵活的栅格系统,方便开发者构建列布局。 知识点三:侧边栏实现 在mui框架中实现侧边栏可以通过多种方式,比如使用mui sidebar组件或者通过布局类来控制侧边栏的位置和宽度。通常,侧边栏会使用mui的绝对定位或者float浮动布局,与主内容区分开来,并通过JavaScript来控制其显示和隐藏。 知识点四:首页内容切换功能 实现首页可切换的功能,通常需要结合mui的JavaScript库来控制DOM元素的显示和隐藏。这可以通过mui提供的事件监听和动画效果来完成。开发者可能会使用mui的开关按钮或者tab标签等组件来实现这一功能。 知识点五:mui的文件结构 该压缩包文件包含的目录结构说明了mui项目的基本结构。其中,"index.html"文件是项目的入口文件,它将展示整个应用的界面。"manifest.json"文件是应用的清单文件,它在Web应用中起到了至关重要的作用,定义了应用的名称、版本、图标和其它配置信息。"css"文件夹包含所有样式表文件,"unpackage"文件夹可能包含了构建应用后的文件,"fonts"文件夹存放字体文件,"js"文件夹则是包含JavaScript代码的地方。 知识点六:mui的打包和分发 mui框架支持项目的打包和分发,开发者可以使用其提供的命令行工具来打包项目,生成可以部署到服务器的静态资源。这一步通常涉及到资源的压缩、合并和优化。打包后,开发者可以将项目作为一个Web应用分发,也可以将其打包为原生应用,比如通过Cordova、PhoneGap等工具打包成可在iOS或Android设备上安装的应用。 知识点七:mui的兼容性和性能优化 mui框架对老旧设备也做了兼容性考虑,保证应用在低端设备上也有较好的性能表现。性能优化方面,mui提供了多种工具和最佳实践,例如使用懒加载、避免全局变量污染、减少DOM操作等策略来提高应用的运行速度和用户体验。 以上内容是根据标题、描述以及文件名称列表推测出的关于mui实现简单布局的知识点。开发者可以通过分析和实践上述知识点来更好地理解和运用mui框架,从而构建出高效且用户友好的移动应用界面。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【交互式图形】:Shiny应用中lattice包的巧妙应用指南

![R语言数据包使用详细教程lattice](https://blog.morrisopazo.com/wp-content/uploads/Ebook-Tecnicas-de-reduccion-de-dimensionalidad-Morris-Opazo_.jpg) # 1. Shiny与lattice包基础介绍 在数据科学与统计分析的世界中,可视化是一个至关重要的环节,它能够帮助我们直观地理解数据、展示研究成果并有效地传达信息。R语言作为数据分析领域的一个重要工具,其强大的图形能力得到了广泛的认可。在R语言家族中,`lattice`包和`Shiny`应用框架尤其受到关注。本章我们将简
recommend-type

安装包部署到docker中

安装包部署到Docker容器中通常包含以下几个步骤: 1. **准备镜像**:首先,你需要有一个基础的Dockerfile,这个文件描述了如何从基础镜像创建一个新的镜像,并在其中安装所需的软件和服务。例如,你可以基于官方的`alpine`或`ubuntu`等轻量级镜像开始。 ```Dockerfile # 使用官方的Python运行时作为基础镜像 FROM python:3.8-slim # 设置工作目录 WORKDIR /app # 将应用源码复制到容器内 COPY . . # 安装依赖 RUN pip install -r requirements.txt # 暴露端口 EXP
recommend-type

Android仿知乎横线直线进度条实现教程

资源摘要信息:"仿知乎的横线直线progressbar.zip是一个包含Android平台下自定义ProgressBar样式的资源文件包。该资源包可能包含了实现类似知乎应用中横线直线型进度条的源代码,用于在Android应用中提供用户界面的进度反馈。文件包的目的是帮助开发者学习和使用自定义的UI组件,同时促进技术交流。考虑到文件声明中提到了版权问题的免责声明,使用该资源时应确保遵守相关法律法规,尊重原作者的知识产权。" 知识点详细说明: 1. Android UI开发: Android UI开发是指使用Android SDK提供的工具和API创建用户界面的过程。进度条(ProgressBar)是Android中用于展示任务进度的一种常见控件。在Android中,ProgressBar通常有两种形式:圆形和水平线性。开发者可以根据实际需要选择合适的样式,并且可以通过自定义来创建符合特定设计需求的进度条。 2. 自定义ProgressBar: 自定义ProgressBar涉及到对进度条控件外观和行为的修改。开发者可以通过修改ProgressBar的XML属性来自定义其样式,也可以通过重写其绘图方法来创建完全自定义的动画和图形效果。这通常需要一定的Android绘图知识,包括对Canvas、Drawable对象的操作等。 3. 横线直线型ProgressBar: 横线直线型ProgressBar是指进度条在显示时形状为水平的直线。这种样式在视觉上给人以直观的进度展示,适用于需要在界面上表现出线性增长或完成度的场景。这种ProgressBar的实现可能涉及到线性布局(LinearLayout)中子视图的动态更新,或者使用自定义的Drawable资源来绘制进度条的线条和填充。 4. Android源码学习: Android源码学习指的是深入研究Android操作系统、应用框架和库的源代码。通过学习源码,开发者可以更好地理解Android系统的内部机制,提升软件架构设计和问题诊断的能力。源码学习也是一种了解和掌握新技术、新特性的有效途径。 5. 资源收集与整理: 资源收集与整理通常指的是将互联网上分散的有价值信息和资料汇总到一起,便于开发者学习和使用。在技术社区如CSDN,经常有开发者分享自己的学习心得、源码和教程。这些资源对于初学者和有经验的开发者来说都是非常宝贵的。 6. 知识产权和版权: 在进行技术学习和交流时,知识产权和版权问题非常关键。无论是从互联网上获取资源还是分享自己的作品,都应尊重原作者的版权,避免侵犯他人的知识产权。这通常意味着使用资源时应遵守相应的许可协议,并在必要时进行适当的署名或请求授权。 7. CSDN平台: CSDN是中国的一个大型IT技术社区,提供技术文章发布、代码共享、资源下载等多种服务。该平台鼓励开发者分享知识、交流经验,并为开发者提供了一个互相学习、合作的社区环境。对于IT行业人士,CSDN是获取最新技术信息、解决方案和行业动态的重要渠道。