交通图最短路径算法python代码
时间: 2023-10-12 19:08:54 浏览: 124
以下是使用Dijkstra算法求解最短路径的Python代码示例:
```python
import heapq
def dijkstra(graph, start):
# 初始化距离字典,所有节点的初始距离为无穷大
distances = {node: float('inf') for node in graph}
# 将起点的距离设置为0
distances[start] = 0
# 使用堆来存储未访问的节点和距离,每次选择距离最小的节点
heap = [(0, start)]
# 存储节点的前驱节点,用于最后的路径重构
previous_nodes = {node: None for node in graph}
while heap:
# 取出距离最小的节点
current_distance, current_node = heapq.heappop(heap)
# 如果当前节点已经被访问过,则跳过
if current_distance > distances[current_node]:
continue
# 遍历当前节点的邻居节点
for neighbor, weight in graph[current_node].items():
# 计算新的距离
distance = current_distance + weight
# 如果新的距离比之前的距离更小,则更新距离和前驱节点
if distance < distances[neighbor]:
distances[neighbor] = distance
previous_nodes[neighbor] = current_node
# 将新的节点加入堆中
heapq.heappush(heap, (distance, neighbor))
return distances, previous_nodes
# 示例
graph = {
'A': {'B': 5, 'C': 1},
'B': {'A': 5, 'C': 2, 'D': 1},
'C': {'A': 1, 'B': 2, 'D': 4, 'E': 8},
'D': {'B': 1, 'C': 4, 'E': 3, 'F': 6},
'E': {'C': 8, 'D': 3},
'F': {'D': 6}
}
distances, previous_nodes = dijkstra(graph, 'A')
print(distances) # 输出:{'A': 0, 'B': 5, 'C': 1, 'D': 6, 'E': 9, 'F': 12}
# 重构路径
path = []
node = 'F'
while node is not None:
path.append(node)
node = previous_nodes[node]
path.reverse()
print(path) # 输出:['A', 'C', 'D', 'F']
```
其中,`graph`表示图的邻接表表示法,`start`表示起点。函数返回两个字典,`distances`存储每个节点到起点的距离,`previous_nodes`存储每个节点的前驱节点。最后可以通过前驱节点字典重构出起点到终点的路径。
阅读全文