利用softmax网络实现手写数字识别的代码
时间: 2023-12-09 16:04:09 浏览: 69
基于softmax回归的MNIST数据集手写数字识别matlab仿真.zip
5星 · 资源好评率100%
以下是使用Python和PyTorch框架实现手写数字识别的代码,其中包括了softmax回归模型的训练和测试过程。
首先,我们需要导入必要的库和模块:
```python
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
```
然后,我们需要定义数据集和数据加载器:
```python
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=2)
testset = torchvision.datasets.MNIST(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
shuffle=False, num_workers=2)
```
接下来,我们需要定义softmax回归模型:
```python
class SoftmaxRegression(nn.Module):
def __init__(self):
super(SoftmaxRegression, self).__init__()
self.linear = nn.Linear(784, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.linear(x)
return x
```
然后,我们需要定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
```
接下来,我们需要定义训练函数和测试函数:
```python
def train(net, trainloader, criterion, optimizer):
net.train()
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(trainloader)
def test(net, testloader, criterion):
net.eval()
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return correct / total
```
最后,我们可以开始训练和测试模型:
```python
net = SoftmaxRegression()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10):
train_loss = train(net, trainloader, criterion, optimizer)
test_acc = test(net, testloader, criterion)
print('Epoch %d: Train Loss: %.3f, Test Acc: %.3f' % (epoch+1, train_loss, test_acc))
```
训练过程中,我们可以看到每个epoch的训练损失和测试准确率。最后,我们可以使用训练好的模型对新的手写数字图像进行分类。
阅读全文