accuracy_list.append(accuracy.item()) epoch_list.append(epoch.item)
时间: 2024-05-18 09:16:37 浏览: 175
这段代码看起来是将一个准确率值和一个 epoch 值添加到两个列表中。具体来说,`accuracy_list` 是一个存储准确率值的列表,`accuracy.item()` 用于将 PyTorch 的 tensor 转化为 Python 的标量值,并将其添加到列表中。同样的,`epoch_list` 是一个存储 epoch 值的列表,`epoch.item` 用于将 epoch 的 tensor 值转化为 Python 的标量值,并将其添加到列表中。这些列表可能会在训练模型时用于可视化和记录训练过程中的指标。
相关问题
for epoch in range(1, num_epochs + 1): train(model, device, train_loader, optimizer, epoch) test_loss, test_acc, pred, target = test(model, device, test_loader) Recall = recall_score(target, pred, average='macro') Precision = precision_score(target, pred, average='macro') F1_score = f1_score(target, pred, average='macro') kappa_score=cohen_kappa_score(target, pred) test_Loss_list.append(test_loss) test_Accuracy_list.append(test_acc) Recall_list.append(Recall) Precision_list.append(Precision) F1_score_list.append(F1_score) kappa_list.append(kappa_score) Loss.append(test_Loss_list) Accuracy.append(test_Accuracy_list) Recall_test.append(Recall_list) Precision_test.append(Precision_list) F1_score_test.append(F1_score_list) kappa_test.append(kappa_list)
这段代码是一个训练模型的循环,它的目的是在每个epoch中执行训练和测试,并记录相关的指标值。在每个epoch中,模型会通过`train`函数进行训练,然后通过`test`函数计算测试集上的损失、准确率、召回率、精确率、F1分数和Kappa分数。这些指标值会被保存到相应的列表中。最后,这些列表会被保存到`Loss`、`Accuracy`、`Recall_test`、`Precision_test`、`F1_score_test`和`kappa_test`中。
请问还有其他问题吗?
def train_step(real_ecg, dim): noise = tf.random.normal(dim) for i in range(disc_steps): with tf.GradientTape() as disc_tape: generated_ecg = generator(noise, training=True) real_output = discriminator(real_ecg, training=True) fake_output = discriminator(generated_ecg, training=True) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) ### for tensorboard ### disc_losses.update_state(disc_loss) fake_disc_accuracy.update_state(tf.zeros_like(fake_output), fake_output) real_disc_accuracy.update_state(tf.ones_like(real_output), real_output) ####################### with tf.GradientTape() as gen_tape: generated_ecg = generator(noise, training=True) fake_output = discriminator(generated_ecg, training=True) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) ### for tensorboard ### gen_losses.update_state(gen_loss) ####################### def train(dataset, epochs, dim): for epoch in tqdm(range(epochs)): for batch in dataset: train_step(batch, dim) disc_losses_list.append(disc_losses.result().numpy()) gen_losses_list.append(gen_losses.result().numpy()) fake_disc_accuracy_list.append(fake_disc_accuracy.result().numpy()) real_disc_accuracy_list.append(real_disc_accuracy.result().numpy()) ### for tensorboard ### # with disc_summary_writer.as_default(): # tf.summary.scalar('loss', disc_losses.result(), step=epoch) # tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch) # tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch) # with gen_summary_writer.as_default(): # tf.summary.scalar('loss', gen_losses.result(), step=epoch) disc_losses.reset_states() gen_losses.reset_states() fake_disc_accuracy.reset_states() real_disc_accuracy.reset_states() ####################### # Save the model every 5 epochs # if (epoch + 1) % 5 == 0: # generate_and_save_ecg(generator, epochs, seed, False) # checkpoint.save(file_prefix = checkpoint_prefix) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_ecg(generator, epochs, seed, False)
下面是将上述代码转换为PyTorch代码的示例:
```python
def train_step(real_ecg, dim):
noise = torch.randn(dim)
for i in range(disc_steps):
generated_ecg = generator(noise, training=True)
real_output = discriminator(real_ecg, training=True)
fake_output = discriminator(generated_ecg, training=True)
disc_loss = discriminator_loss(real_output, fake_output)
discriminator.zero_grad()
disc_loss.backward()
discriminator_optimizer.step()
### for tensorboard ###
disc_losses.update(disc_loss)
fake_disc_accuracy.update(torch.zeros_like(fake_output), fake_output)
real_disc_accuracy.update(torch.ones_like(real_output), real_output)
#######################
for i in range(gen_steps):
generated_ecg = generator(noise, training=True)
fake_output = discriminator(generated_ecg, training=True)
gen_loss = generator_loss(fake_output)
generator.zero_grad()
gen_loss.backward()
generator_optimizer.step()
### for tensorboard ###
gen_losses.update(gen_loss)
#######################
def train(dataset, epochs, dim):
for epoch in tqdm(range(epochs)):
for batch in dataset:
train_step(batch, dim)
disc_losses_list.append(disc_losses.avg)
gen_losses_list.append(gen_losses.avg)
fake_disc_accuracy_list.append(fake_disc_accuracy.avg)
real_disc_accuracy_list.append(real_disc_accuracy.avg)
### for tensorboard ###
# with disc_summary_writer.as_default():
# tf.summary.scalar('loss', disc_losses.result(), step=epoch)
# tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch)
# tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch)
# with gen_summary_writer.as_default():
# tf.summary.scalar('loss', gen_losses.result(), step=epoch)
#######################
disc_losses.reset()
gen_losses.reset()
fake_disc_accuracy.reset()
real_disc_accuracy.reset()
#######################
# Save the model every 5 epochs
# if (epoch + 1) % 5 == 0:
# generate_and_save_ecg(generator, epochs, seed, False)
# checkpoint.save(file_prefix = checkpoint_prefix)
# Generate after the final epoch
# display.clear_output(wait=True)
# generate_and_save_ecg(generator, epochs, seed, False)
```
注意:上述代码仅作为示例,可能需要根据实际情况进行调整和修改。
阅读全文