Identify the differentially expressed mRNA and lncRNA,use R语言
时间: 2024-02-15 13:02:45 浏览: 69
在R语言中,可以使用一系列的包来进行差异表达分析,其中常用的包包括`DESeq2`、`edgeR`和`limma`等。下面以`DESeq2`为例,介绍如何进行差异表达分析并鉴定不同ially expressed mRNA和lncRNA。
1. 数据预处理
首先,需要将原始的RNA-seq数据进行预处理,包括质量控制、去除低质量的reads、过滤低表达的基因等步骤。这里不再详细介绍,具体可参考其他文献或教程。
2. 差异表达分析
使用`DESeq2`包进行差异表达分析的主要步骤包括:建立count表达矩阵、定义样本信息、创建`DESeqDataSet`对象、估计基因表达水平、拟合差异表达模型、进行差异表达分析、多重检验校正、筛选显著差异表达基因等。
```R
# 加载DESeq2包
library(DESeq2)
# 建立count表达矩阵,假设count数据已经处理好并保存在counts_matrix.txt文件中
countdata <- as.matrix(read.table("counts_matrix.txt", header = TRUE, row.names = 1))
# 定义样本信息,假设样本信息保存在sample_info.txt文件中,格式为:样本名\t组别
coldata <- read.table("sample_info.txt", header = TRUE, row.names = 1, sep = "\t")
coldata$group <- factor(coldata$group)
# 创建DESeqDataSet对象
dds <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata, design = ~ group)
# 估计基因表达水平
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
# 拟合差异表达模型
dds <- DESeq(dds)
# 进行差异表达分析
res <- results(dds)
# 多重检验校正,使用Benjamini-Hochberg方法
res <- p.adjust(res$pvalue, method = "BH")
# 筛选显著差异表达基因
sig_genes <- rownames(res)[res$padj < 0.05 & abs(res$log2FoldChange) > 1]
# 将显著差异表达基因的信息保存到文件中
write.table(sig_genes, "sig_genes.txt", quote = FALSE, row.names = FALSE, col.names = FALSE)
```
3. 鉴定不同ially expressed mRNA和lncRNA
根据差异表达分析结果,可以将基因分为不同ially expressed mRNA和lncRNA。一般来说,mRNA和lncRNA的区别主要体现在它们的转录本长度、编码能力、组织特异性等方面。因此,可以利用已知的mRNA和lncRNA的注释信息,根据基因的转录本长度和编码能力等特征对基因进行分类。
在R语言中,可以使用`biomaRt`包来获取基因的注释信息,具体可参考其他文献或教程。根据注释信息,可以对基因进行分类,从而鉴定不同ially expressed mRNA和lncRNA。
```R
# 加载biomaRt包
library(biomaRt)
# 连接Ensembl数据库
ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")
# 获取基因的注释信息
gene_info <- getBM(attributes = c("ensembl_gene_id", "transcript_length", "gene_biotype"), mart = ensembl)
# 根据转录本长度和编码能力等特征,将基因分为不同ially expressed mRNA和lncRNA
de_mrna <- gene_info[gene_info$gene_biotype == "protein_coding" & gene_info$transcript_length >= 200, "ensembl_gene_id"]
de_lncrna <- gene_info[gene_info$gene_biotype == "lncRNA" & gene_info$transcript_length >= 200, "ensembl_gene_id"]
# 将不同ially expressed mRNA和lncRNA的信息保存到文件中
write.table(de_mrna, "de_mrna.txt", quote = FALSE, row.names = FALSE, col.names = FALSE)
write.table(de_lncrna, "de_lncrna.txt", quote = FALSE, row.names = FALSE, col.names = FALSE)
```
以上是使用R语言进行差异表达分析和鉴定不同ially expressed mRNA和lncRNA的基本流程,实际操作中还需要根据具体情况进行调整和改进。
阅读全文