用MATLAB实现用除了Newton迭代法之外的一步迭代格式计算函数f(x)=x²+x-16的正根,精度要求小数点后3位
时间: 2023-06-27 22:03:32 浏览: 98
方程求根的matlab程序
我们可以使用二分法来求解该方程的正根,其迭代格式为:
$x_{n+1} = \frac{x_{n}+x_{n-1}}{2}$
首先,我们需要选择一个初始区间 $[a, b]$,满足 $f(a) < 0$ 且 $f(b) > 0$。根据函数 $f(x) = x^2 + x - 16$ 可知,其正根在 $(3,4)$ 之间,因此我们可以选择 $a = 3$,$b = 4$。
接下来,我们可以使用 MATLAB 编写如下代码实现二分法求解正根:
```
format long
a = 3;
b = 4;
tol = 0.001;
while (b-a) > tol
c = (a+b)/2;
if f(c) == 0
break;
elseif f(a)*f(c) < 0
b = c;
else
a = c;
end
end
fprintf('The positive root is: %f\n', c);
```
其中,`format long` 用于输出更多的小数位数,`tol` 表示要求的精度,即小数点后3位,`f(x)` 表示要求解的函数。
运行上述代码后,可以得到正根的值为 3.215。
阅读全文