*5.在服务器端利用pytorch框架训练一个神经网络,想把这个网络移植到边缘端,错误的是: A、向RK3399 Pro移植可采用的方式是,直接将训练得到的pt文件复制到RK3399 Pro边缘 端,在RK3399 Pro上搭建pytorch开发环境,然后执行推理 B、向Jetson Nano移植可采用的方式是,直接将训练得到的pt文件复制到Jetson Nano边缘端,在Jetson Nano上搭建pytorch开发环境,然后执行推理 C、在服务器端将训练好的pytorch模型,转换为onnx模型,再将onnx模型复制到JetsonNano设备上,将onnx模型转换成Tensor RT模型,最后使用Jetson上的TensorRT环境进行推理。 D、在服务端将训练好的pytorch模型,转换成onnx模型,同时在服务端利用工具将onnx模型转换为rknn网络文件、量化,之后放到RK3399 Pro设备上进行推理。
时间: 2023-06-13 12:04:42 浏览: 175
YOLOv5算法移植部署RK3399Pro开发板及pytorch模型转ONNX转RKNN(带说明文档).zip
A、B 选项都是错误的,因为在边缘端设备上执行推理需要相应的推理框架和环境,不能直接将训练得到的 pt 文件复制到边缘端设备上。C 选项是正确的,可以将训练好的 pytorch 模型转换为 onnx 模型,并将其复制到 Jetson Nano 设备上,再将 onnx 模型转换为 TensorRT 模型,最后使用 Jetson 上的 TensorRT 环境进行推理。D 选项也是正确的,可以将训练好的 pytorch 模型转换为 onnx 模型,并将其转换为 rknn 网络文件,同时进行量化,之后放到 RK3399 Pro 设备上进行推理。
阅读全文