请修改输出,一个是LABEL输出,一个是特征输出 : def _slice_multi(self): # self.n 是数据集总行数 # self.m 是列 s = self.ps*self.skip + self.Ck-1 + self.h-1 X1 = np.zeros((self.n-s, self.w, self.m)) # short term dataset X2 = np.zeros((self.n-s, self.ps*self.Ck, self.m)) # long term dataset Y = np.zeros((self.n-s, self.m)) # output dataset for i in range(s, self.n): t = i-self.h+1 X1[i-s] = self.raw[t-self.w:t].copy() idx = [] for k in range(self.ps): # 执行4次,每次间隔skip长,取Ck=6, total = 4 * 6 = 24 idx = list(range(t-self.Ck-k*self.skip, t-k*self.skip)) + idx idx = np.array(idx, dtype=int) X2[i-s] = self.raw[idx].copy() Y[i-s] = self.raw[i].copy() return X1, X2, Y
时间: 2024-02-14 10:15:01 浏览: 205
修改后的函数输出为:
```python
def _slice_multi(self):
# self.n 是数据集总行数
# self.m 是列
s = self.ps * self.skip + self.Ck - 1 + self.h - 1
X1 = np.zeros((self.n - s, self.w, self.m)) # 短期数据集
X2 = np.zeros((self.n - s, self.ps * self.Ck, self.m)) # 长期数据集
Y = np.zeros((self.n - s, self.m)) # 输出数据集
for i in range(s, self.n):
t = i - self.h + 1
X1[i - s] = self.raw[t - self.w:t].copy()
idx = []
for k in range(self.ps):
# 执行self.ps次,每次间隔self.skip长,取self.Ck=6, total = self.ps * self.Ck
idx = list(range(t - self.Ck - k * self.skip, t - k * self.skip)) + idx
idx = np.array(idx, dtype=int)
X2[i - s] = self.raw[idx].copy()
Y[i - s] = self.raw[i].copy()
# 返回特征和标签
return {'X1': X1, 'X2': X2}, Y
```
修改后的函数输出了两个变量,一个是包含特征 X1 和 X2 的字典,另一个是标签 Y。这样的修改使得函数输出更加清晰,方便后续的使用。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)