再写一个tansformer的完整代码
时间: 2023-03-19 18:21:45 浏览: 100
好的,这里是一个简单的 Transformer 的完整代码示例,用 PyTorch 实现。
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
```
然后,我们定义一个 Transformer 模型类:
```python
class Transformer(nn.Module):
def __init__(self, input_dim, output_dim, d_model, n_heads, n_layers, dropout):
super().__init__()
self.input_embedding = nn.Linear(input_dim, d_model)
self.output_embedding = nn.Linear(d_model, output_dim)
self.positional_encoding = PositionalEncoding(d_model, dropout)
self.encoder_layers = nn.ModuleList([
EncoderLayer(d_model, n_heads, dropout) for _ in range(n_layers)
])
self.decoder_layers = nn.ModuleList([
DecoderLayer(d_model, n_heads, dropout) for _ in range(n_layers)
])
self.output_projection = nn.Linear(d_model, output_dim)
def forward(self, src, trg, src_mask=None, trg_mask=None):
src = self.input_embedding(src)
trg = self.input_embedding(trg)
src = self.positional_encoding(src)
trg = self.positional_encoding(trg)
for layer in self.encoder_layers:
src = layer(src, src_mask)
for layer in self.decoder_layers:
trg = layer(trg, src, trg_mask, src_mask)
output = self.output_projection(trg)
output = self.output_embedding(output)
return output
```
这里的 `Transformer` 类包含了输入和输出的嵌入层,位置编码器,编码器和解码器层,以及最后的输出投影层。
接下来,我们需要定义位置编码器、编码器层和解码器层:
```python
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class EncoderLayer(nn.Module):
def __init__(self, d_model, n_heads, dropout):
super().__init__()
self.self_attention = MultiHeadAttention(d_model, n_heads)
self.feedforward = FeedForward(d_model, dropout)
def forward(self, x, mask):
x = self.self_attention(x, x, x, mask)
x = self.feedforward(x)
return x
class DecoderLayer(nn.Module):
def __init__(self, d_model, n_heads, dropout):
super().__init__()
self.self_attention = MultiHeadAttention(d_model, n_heads)
self.encoder_attention = MultiHeadAttention(d_model, n_heads)
self.feedforward = FeedForward(d_model, dropout)
def forward(self, x, encoder_output, trg_mask, src
阅读全文