再写一个行人属性识别训练没有验证集路径的图片代码

时间: 2024-02-21 07:02:20 浏览: 76
好的,以下是一个简单的行人属性识别训练代码,可以处理没有验证集路径的图片数据集: ```python import os import random import numpy as np from PIL import Image import tensorflow as tf # 定义数据集路径和标签 data_dir = "path/to/dataset" labels = ["male", "female", "young", "old", "adult", "teenager"] # 读取数据集并预处理 def preprocess_data(): data = [] for label in labels: label_folder = os.path.join(data_dir, label) for filename in os.listdir(label_folder): img_path = os.path.join(label_folder, filename) img = Image.open(img_path).resize((224, 224)) img = np.array(img) / 255.0 data.append((img, label)) random.shuffle(data) return data # 划分训练集和验证集 def split_data(data, split_ratio): split_index = int(split_ratio * len(data)) train_data = data[:split_index] val_data = data[split_index:] return train_data, val_data # 定义模型 def create_model(): base_model = tf.keras.applications.ResNet50(include_top=False, input_shape=(224, 224, 3)) for layer in base_model.layers: layer.trainable = False global_average_layer = tf.keras.layers.GlobalAveragePooling2D() prediction_layer = tf.keras.layers.Dense(len(labels), activation="softmax") model = tf.keras.Sequential([ base_model, global_average_layer, prediction_layer ]) model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) return model # 训练模型 def train_model(): data = preprocess_data() train_data, val_data = split_data(data, 0.8) train_images, train_labels = zip(*train_data) val_images, val_labels = zip(*val_data) train_images = np.array(train_images) train_labels = np.array([labels.index(label) for label in train_labels]) val_images = np.array(val_images) val_labels = np.array([labels.index(label) for label in val_labels]) model = create_model() model.fit(train_images, train_labels, epochs=10, validation_data=(val_images, val_labels)) return model # 测试模型 def test_model(model): test_images = [] for filename in os.listdir("path/to/test/images"): img_path = os.path.join("path/to/test/images", filename) img = Image.open(img_path).resize((224, 224)) img = np.array(img) / 255.0 test_images.append(img) test_images = np.array(test_images) predictions = model.predict(test_images) predicted_labels = [labels[np.argmax(prediction)] for prediction in predictions] return predicted_labels # 训练并测试模型 model = train_model() predicted_labels = test_model(model) print(predicted_labels) ``` 这个代码中,我们首先定义了数据集路径和标签,然后使用 `preprocess_data()` 函数读取数据集并预处理,接着使用 `split_data()` 函数划分训练集和验证集,然后使用 `create_model()` 函数定义模型,使用 `train_model()` 函数训练模型,使用 `test_model()` 函数测试模型,最后输出预测标签。需要注意的是,由于没有验证集路径,我们在训练模型时直接使用了划分后的训练集和验证集,而在测试模型时使用了预定义的测试图片路径。
阅读全文

相关推荐

最新推荐

recommend-type

郑哲东 Deep-ReID:行人重识别的深度学习方法

郑哲东 Deep-ReID:行人重识别的深度学习方法。 Person re-identification Background Learn pedestrian representations from
recommend-type

关于车辆识别算法和行人识别算法 特征提取.doc

【车辆识别算法与行人识别算法】在智能驾驶和高级驾驶员辅助系统(ADAS)中扮演着至关重要的角色,其中方向梯度直方图(HOG)特征是物体检测的关键技术之一,尤其适用于行人检测。HOG特征由法国研究人员Dalal在2005年的...
recommend-type

行人重识别论文解读报告

图像分析与机器视觉课程作业,是一篇关于行人重识别的论文《Joint Discriminative and Generative Learning for Person Re-identification》的解读报告。
recommend-type

pycharm下python使用yolov3/yolov3-tiny训练好的权重文件.weights进行行人检测,批量测试自定义文件夹下的图片并输出至指定文件夹

在本文中,我们将探讨如何在PyCharm环境下利用Python结合YOLOv3或YOLOv3-tiny模型,使用预先训练好的权重文件进行行人检测,并批量处理自定义文件夹中的图片,将检测结果输出到指定文件夹。这个过程对于目标识别和...
recommend-type

DeepStream 基于 Python 的行人统计模块代码解析

在本课程中,我们将深入探讨如何使用NVIDIA的DeepStream SDK构建一个基于Python的行人统计模块。DeepStream是一个强大的工具,专为实时的高级分析和深度学习推理设计,尤其适用于计算机视觉任务,如对象检测、行人...
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。