给出一个jetson使用pytorch训练图像模型的例子
时间: 2023-12-07 20:02:21 浏览: 88
以下是一个使用Jetson Nano运行PyTorch的图像分类器示例代码:
首先,安装必要的依赖项:
```
sudo apt-get install python3-pip libopenblas-dev libatlas-base-dev liblapack-dev libblas-dev liblapack-dev libjpeg-dev libpng-dev libtiff-dev libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libxvidcore-dev libx264-dev libgtk-3-dev libhdf5-dev libprotobuf-dev protobuf-compiler libgflags-dev libgoogle-glog-dev liblmdb-dev libboost-all-dev libgphoto2-dev libeigen3-dev
```
然后,安装PyTorch:
```
sudo pip3 install torch torchvision
```
接下来,创建一个名为“image_classification.py”的文件,并将以下代码复制到其中:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import datasets, models, transforms
import time
import os
import copy
# 定义数据转换
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# 加载数据集
data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
# 判断是否使用GPU
use_gpu = torch.cuda.is_available()
# 定义模型
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
if use_gpu:
model_ft = model_ft.cuda()
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# 定义学习率调整策略
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# 定义训练函数
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model = model
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# 每个epoch都有训练和验证阶段
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train(True)
else:
model.train(False)
running_loss = 0.0
running_corrects = 0
# 迭代数据
for data in dataloaders[phase]:
# 获取输入
inputs, labels = data
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# 梯度清零
optimizer.zero_grad()
# 前向传播
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
# 反向传播 + 优化
if phase == 'train':
loss.backward()
optimizer.step()
# 统计
running_loss += loss.item()
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# 保存最佳模型权重
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model = copy.deepcopy(model)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
return best_model
# 训练模型
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)
# 保存模型
torch.save(model_ft.state_dict(), 'model.pt')
```
此代码将加载一个预训练的ResNet-18模型,并使用Hymenoptera数据集对其进行微调。根据需要进行更改,例如更改数据集路径,更改迭代次数或更改模型架构。
运行代码:
```
python3 image_classification.py
```
代码将训练模型,并将最佳模型保存到“model.pt”文件中。
阅读全文