cess to XMLHttpRequest at 'https://isdapp.shandong.gov.cn/jpaas-jags-server/interface/gateway' from origin 'http://localhost:8081' has been blocked by CORS policy: Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-O

时间: 2024-04-27 17:21:25 浏览: 10
这是一个跨域问题,可能是因为你的前端页面在本地运行,而请求的接口在另外一个域名下。浏览器会限制跨域请求,以防止恶意攻击。解决这个问题的方法有多种,其中比较常见的是在后端接口中添加相关的CORS头信息,例如Access-Control-Allow-Origin等。你可以在后端接口中添加这些头信息,以允许前端页面跨域请求。如果你无法修改后端接口代码,也可以考虑使用代理或者JSONP等方式来解决跨域问题。
相关问题

cess to XMLHttpRequest at 'http://127.0.0.1/PHP/shop/addtupian.php' from origin 'http://localhost:8080' has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header is present on the requested resource.

这个问题是由于浏览器的同源策略所导致的。当你在一个网页中向另一个不同源(协议、域名、端口号任意一个不同)的网站发起 AJAX 请求时,浏览器会拦截这个请求,因为这可能会造成安全问题。为了解决这个问题,可以在服务器端添加响应头,允许跨域访问。具体方法是在服务器端的响应中添加一个名为 "Access-Control-Allow-Origin" 的响应头,值为允许跨域访问的域名。例如,在 PHP 中可以使用以下代码:header("Access-Control-Allow-Origin: http://localhost:8080"); 这样就可以允许来自 http://localhost:8080 的请求访问了。

cess to fetch at 'https://edrill.obs.cn-east-3.myhuaweicloud.com/drillFile%2Fdev%2F1686029429714_%E6%B5%8B%E8%AF%95%E7%A9%BA%E7%99%BDpdfsd.pdf' from origin 'http://192.168.20.12:8000' has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header is present on the requested resource. If an opaque response serves your needs, set the request's mode to 'no-cors' to fetch the resource with CORS disabled.

这个错误提示表示浏览器在请求 https://edrill.obs.cn-east-3.myhuaweicloud.com/drillFile%2Fdev%2F1686029429714_%E6%B5%8B%E8%AF%95%E7%A9%BA%E7%99%BDpdfsd.pdf 时,由于服务器返回的响应头中没有包含 Access-Control-Allow-Origin 字段,因此浏览器禁止了访问。这是浏览器的一种安全策略,称为跨域资源共享 (CORS)。CORS 旨在保护用户的安全,防止恶意网站通过浏览器访问其他网站的资源。 要解决这个问题,你需要在服务器端添加响应头,包含 Access-Control-Allow-Origin 字段,并设置为允许访问的域名。例如,在 Node.js 中可以使用以下代码添加响应头: ``` res.setHeader('Access-Control-Allow-Origin', 'http://192.168.20.12:8000'); ``` 其中,res 是服务器的响应对象,'http://192.168.20.12:8000' 是允许访问的域名。 如果你无法控制服务器端的响应头,也可以使用一些工具来绕过这个限制,例如使用代理服务器或跨域资源共享代理 (CORS proxy)。但这些方法可能会影响性能和安全性,应该谨慎使用。

相关推荐

7.3.1 Suzuki–Kasami Algorithm This algorithm is defined for a completely connected network of processes. It assumes that initially an arbitrary process has the token. A process i that does not have the token but wants to enter its CS broadcasts a request (i, num), where num is sequence number of that request. The algorithm guarantees that eventually process i receives the token. Every process i maintains an array req[0.. n − 1] of integers, where req[j] designates the sequence number of the latest request received from process j. Note that although every process receives a request, only one process (which currently has the token) can grant the token. As a result, some pending requests become stale or outdated. An important issue in this algorithm is to identify and discard these stale requests. To accomplish this, each process uses the following two additional data structures that are passed on with the token by its current holder: • An array last[0.. n − 1] of integers, where last[k] = r implies that during its last visit to its CS, process k has completed its rth trip • A queue Q containing the identifiers of processes with pending requests When a process i receives a request with a sequence number num from process k, it updates req[k] to max(req[k], num), so that req[k] now represents the most recent request from process k. A process holding the token must guarantee (before passing it to another process) that its Q contains the most recent requests. To satisfy this requirement, when a process i receives a token from another process, it executes the following steps: • It copies its num into last[i]. • For each process k, process i retains process k’s name in its local queue Q only if 1 + last[k] = req[k] (this establishes that the request from process k is a recent one). • Process i completes the execution of its CS codes. • If Q is nonempty, then it forwards the token to the process at the head of Q after deleting its entry. To enter the CS, a process sends (n − 1) requests and receives one message containing the token. The total number of messages required to complete one visit to its CS is thus (n − 1) + 1 = n. Readers are referred to [SK85] for a proof of this algorithm理解Suzuki-Kasami算法,并回答如下问题: 算法是如何辨别和丢弃过时的请求的,或者说为什么要求1 + last[k] = req[k]?

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。