高精度定时器实现mfc

时间: 2023-06-26 22:02:29 浏览: 293
PPT

程序示例-MFC定时器的使用介绍

### 回答1: 高精度定时器是指能够实现毫秒级别或更高精度的定时器。在MFC中实现高精度定时器可以通过以下步骤实现: 1.创建一个窗口,并通过SetTimer函数设置一个定时器。该函数有两个参数,一个是定时器ID号,一个是定时器的时间间隔。 2.在窗口类中添加一个成员变量,用于保存已经过去的时间。我们可以在WM_TIMER消息处理函数中,每次处理时递增该变量。 3.通过该变量计算出所需的时间,然后进行相应的操作。例如,我们可以将该变量转化为分钟和秒钟,然后在窗口上显示出来。 4.为了提高定时器的精度,可以通过Win32 API函数timeGetTime获取系统时间,然后在WM_TIMER消息处理函数中计算与上一次时间间隔,从而更加精确地计算已经过去的时间。 需要注意的是,高精度定时器会占用系统资源,并且可能存在时间误差。因此,在实现时需要考虑这些因素,并根据实际需求进行调整。 ### 回答2: 高精度定时器是一种能够实现较为精确的时间计量和延时控制的技术,而MFC(Microsoft Foundation Classes)则是基于Windows操作系统的C++类库,提供了GUI界面开发所需要的各种类、函数和控件等工具。将两者结合使用,可以实现用MFC编写的应用程序对时间的更加准确的控制或监测,如毫秒或微秒级别的时间计算和处理等。 要在MFC中实现高精度定时器功能,可以考虑使用Win32 API中提供的计时器函数来进行实现。具体实现步骤如下: 1. 定义计时器变量和时间变量。例如: UINT_PTR m_TimerID; // 计时器ID DWORD m_dwStartTime; // 记录开始时间 DWORD m_dwCurrentTime; // 记录当前时间 DWORD m_dwElapsedTime; // 记录已过时间 2. 创建计时器并开始计时。可以在窗口初始化函数中添加如下代码: m_TimerID = SetTimer(1, 1, NULL); // 1ms间隔 m_dwStartTime = GetTickCount(); // 记录开始时间 3. 处理计时器消息。在窗口消息响应函数中,添加对WM_TIMER消息的处理,如: case WM_TIMER: { m_dwCurrentTime = GetTickCount(); // 记录当前时间 m_dwElapsedTime = m_dwCurrentTime - m_dwStartTime; // 计算已过时间 // 这里可以根据需要进行时间数据的显示、处理等其他操作 } break; 4. 在窗口关闭时停止计时器。可以在窗口关闭函数中添加如下代码: KillTimer(m_TimerID); 以上就是使用高精度定时器实现MFC的简单示例。需要注意的是,由于不同计算机的性能和Windows操作系统的版本等因素可能会影响计时器的精度和稳定性,因此在实际应用中需要针对具体需求进行测试和调整。 ### 回答3: 高精度定时器可以通过MFC的计时器来实现。MFC的计时器是基于Windows API的定时器实现的。Windows API提供了一个SetTimer函数,用于设置定时器。MFC的CWnd类继承了Windows API的CWnd类,在此基础上提供了一系列的计时器函数。 使用MFC计时器,首先需要在类声明中添加一个计时器ID,具体实现可以如下: #define TIMER_ID 1 class CMyDlg : public CDialog { public: CMyDlg(CWnd* pParent = NULL); // 对话框数据 #ifdef AFX_DESIGN_TIME enum { IDD = IDD_MYDLG_DIALOG }; #endif protected: virtual void DoDataExchange(CDataExchange* pDX); protected: HICON m_hIcon; int m_nCount; afx_msg void OnTimer(UINT_PTR nIDEvent); afx_msg void OnBnClickedButtonStart(); afx_msg void OnBnClickedButtonStop(); DECLARE_MESSAGE_MAP() }; 在类声明中添加了一个计时器ID为1。同时,在消息映射中,添加了一个响应定时器事件的函数OnTimer。 void CMyDlg::OnTimer(UINT_PTR nIDEvent) { if (nIDEvent == TIMER_ID) { m_nCount++; //每次增加计数 } CDialog::OnTimer(nIDEvent); } OnTimer函数响应计时器事件,其中nIDEvent就是计时器ID。在函数中,我们可以编写计时器事件响应的代码,这里是每次增加计数。 在对话框初始化时就设置计时器: BOOL CMyDlg::OnInitDialog() { CDialog::OnInitDialog(); // 将“关于...”菜单项添加到系统菜单中。 // IDM_ABOUTBOX 必须在系统命令范围内。 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); ASSERT(IDM_ABOUTBOX < 0xF000); CMenu* pSysMenu = GetSystemMenu(FALSE); if (pSysMenu != NULL) { BOOL bNameValid; CString strAboutMenu; bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX); ASSERT(bNameValid); if (!strAboutMenu.IsEmpty()) { pSysMenu->AppendMenu(MF_SEPARATOR); pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); } } // 设置此对话框的图标。当应用程序主窗口不是对话框时,框架将自动 // 执行此操作 SetIcon(m_hIcon, TRUE); // 设置大图标 SetIcon(m_hIcon, FALSE); // 设置小图标 // TODO: 在此添加额外的初始化代码 SetTimer(TIMER_ID, 500, NULL); return TRUE; // 除非将焦点设置到控件,否则返回 TRUE } 在OnInitDialog函数中添加代码SetTimer(TIMER_ID, 500, NULL);就可以设置一个500ms的计时器了。 当然,在对话框关闭时,还要记得取消计时器: void CMyDlg::OnBnClickedButtonStop() { // TODO: 在此添加控件通知处理程序代码 KillTimer(TIMER_ID); } 这样,一个MFC的高精度定时器就实现了。其实,在MFC中,还可以使用CWnd::SetTimer来设置定时器,不过与SetTimer函数类似,使用时也需要取消,不然会造成内存泄漏。同时,MFC还提供了更为灵活的计时器功能,可以用来处理其他复杂的问题。
阅读全文

相关推荐

最新推荐

recommend-type

C#中自定义高精度Timer定时器的实例教程

实现高精度定时器的关键在于等待策略和计时机制。计时部分可以借助Stopwatch类,它使用硬件级别的QueryPerformanceCounter和QueryPerformanceFrequency API,提供纳秒级别的精度。等待策略则分为自旋等待和阻塞等待...
recommend-type

STM32G4高精度定时器及在数字电源中的应用.pdf

例如,在数字电源中,高精度定时器可用于PWM(脉宽调制)信号的生成,通过调整PWM占空比来调节输出电压,实现电源的动态响应和高效能。 STM32G4系列还集成了混合信号处理功能,包括数字信号处理(DSP)指令和模拟...
recommend-type

PHP语言基础知识详解及常见功能应用.docx

本文详细介绍了PHP的基本语法、变量类型、运算符号以及文件上传和发邮件功能的实现方法,适合初学者了解和掌握PHP的基础知识。
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

L1正则化模型诊断指南:如何检查模型假设与识别异常值(诊断流程+案例研究)

![L1正则化模型诊断指南:如何检查模型假设与识别异常值(诊断流程+案例研究)](https://www.dmitrymakarov.ru/wp-content/uploads/2022/10/lr_lev_inf-1024x578.jpg) # 1. L1正则化模型概述 L1正则化,也被称为Lasso回归,是一种用于模型特征选择和复杂度控制的方法。它通过在损失函数中加入与模型权重相关的L1惩罚项来实现。L1正则化的作用机制是引导某些模型参数缩小至零,使得模型在学习过程中具有自动特征选择的功能,因此能够产生更加稀疏的模型。本章将从L1正则化的基础概念出发,逐步深入到其在机器学习中的应用和优势