if len(solutions) != optimizer.population_size: # 随机生成一些解向量,补足不足的部分 while len(solutions) < optimizer.population_size: x = [random.randint(Min_pump_zcjj, Max_pump_zcjj), random.randint(Min_pump_bdljd, Max_pump_bdljd), random.uniform(Min_pump_bdwz, Max_pump_bdwz), random.uniform(Min_pump_skhd, Max_pump_skhd)] value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 计算每个个体的目标函数值,并存储在solutions列表中 optimizer.tell(solutions)
时间: 2024-02-10 19:32:53 浏览: 65
这段代码是用于补充种群中不足的个体数,使种群大小满足 population_size 的要求。如果 solutions 列表中的个体数不足 population_size,就进入 while 循环,不断使用随机生成的解向量补足不足的部分。其中,Min_pump_zcjj、Max_pump_zcjj、Min_pump_bdljd、Max_pump_bdljd、Min_pump_bdwz、Max_pump_bdwz、Min_pump_skhd 和 Max_pump_skhd 分别是四个变量的取值范围。随机生成的解向量 x 的每个元素都在对应的取值范围内。生成解向量后,计算其适应度(即目标函数的值),并将解向量和适应度打包成一个元组添加到 solutions 列表中。最后,使用 optimizer.tell(solutions) 更新优化器的内部状态,包括种群中每个个体的目标函数值。
相关问题
if len(solutions) != optimizer.population_size: # 随机生成一些解向量,补足不足的部分 while len(solutions) < optimizer.population_size: x = [random.randint(1, 51) for _ in range(4)] value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 计算每个个体的目标函数值,并存储在solutions列表中上述代码是什么意思
这段代码是一个优化算法中的部分代码,它的功能是为了保证种群大小(`population_size`)的一致性,如果当前种群中的解向量(`solutions`)数量不足种群大小,那么会随机生成一些解向量来补足不足的部分。每个解向量都由4个随机整数构成,并计算它们的目标函数值(`quadratic`函数),然后将解向量和目标函数值存储在`solutions`列表中。整个过程旨在初始化种群并准备进行优化。
while True: # 生成一个新的种群,每个个体是一个解向量 rounds += 1 solutions = [] for _ in range(max_iterations): x = optimizer.ask() x[0] = int(x[0]) x[1] = int(x[1]) if (x[0] == 51 and x[1] == 51) or (x[0] == 26 and x[1] == 26): pass else: value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 检查解向量个数是否等于种群大小 if len(solutions) != optimizer.population_size: while len(solutions) < optimizer.population_size: x = [random.randint(Min_pump_zcjj, Max_pump_zcjj), random.randint(Min_pump_bdljd, Max_pump_bdljd), random.uniform(Min_pump_bdwz, Max_pump_bdwz), random.uniform(Min_pump_skhd, Max_pump_skhd)] value = quadratic(x[0], x[1], x[2], x[3]) solutions.append((x, value)) # 随机生成一些解向量,补足不足的部分 optimizer.tell(solutions)
这段代码是一个使用 CMA-ES 优化器进行二次函数最小化的例子。它采用了一个基本的遗传算法的流程,不断生成新的种群,并对种群中的每个个体求解目标函数的值。然后,它把求解结果告诉优化器,优化器会根据当前的状态信息来更新种群,让下一轮迭代更加接近最优解。
具体来说,这个代码中的 `while True:` 循环表示不断进行迭代,直到达到预定的停止条件为止。在每一轮迭代中,它会生成一个新的种群,并对种群中的每个个体求解目标函数的值。然后,它通过调用 `optimizer.tell(solutions)` 方法,把求解结果告诉优化器。`solutions` 是一个列表,其中每个元素是一个元组 `(x, value)`,表示一个解向量 `x` 和对应的目标函数值 `value`。
在生成新的种群时,这个代码使用了一个 `for _ in range(max_iterations):` 循环,表示在当前的种群中进行 `max_iterations` 次迭代。在每次迭代中,它会调用 `optimizer.ask()` 方法,生成一个新的解向量 `x`。然后,它会对 `x` 进行一些预处理,例如将 `x[0]` 和 `x[1]` 强制转换为整数,以确保解向量的合法性。然后它会计算目标函数的值,并把 `(x, value)` 添加到 `solutions` 列表中。
如果当前的种群中的个体数量不足 `optimizer.population_size`,这个代码就会进入一个 `while` 循环,不断随机生成新的解向量,并计算目标函数的值,直到种群中的个体数量达到 `optimizer.population_size`。然后,它会调用 `optimizer.tell(solutions)` 方法,把求解结果告诉优化器,优化器会根据当前的状态来更新种群。
最终,这个代码会在达到预定的停止条件时停止迭代,并返回找到的最优解。
阅读全文