模糊神经网络python代码
时间: 2023-09-02 11:05:52 浏览: 71
以下是一个简单的模糊神经网络的 Python 代码示例:
```python
import numpy as np
class FuzzyNeuralNetwork:
def __init__(self, num_inputs, num_outputs, num_rules):
self.num_inputs = num_inputs
self.num_outputs = num_outputs
self.num_rules = num_rules
self.rules = np.random.rand(num_rules, num_inputs + num_outputs)
def activate(self, x):
# Compute the degree of membership for each rule
degrees = np.zeros(self.num_rules)
for i in range(self.num_rules):
min_vals = np.minimum(x, self.rules[i, :self.num_inputs])
degrees[i] = np.prod(min_vals)
# Compute the output for each rule
outputs = np.zeros(self.num_rules)
for i in range(self.num_rules):
outputs[i] = degrees[i] * self.rules[i, -self.num_outputs:].sum()
# Combine the outputs of all rules
return np.sum(outputs) / np.sum(degrees)
```
该代码实现了一个具有随机生成规则的模糊神经网络,其中每个规则都由输入和输出变量的最小值组成。该网络可以通过调用 `activate` 方法来计算给定输入向量的输出。在此方法中,我们首先计算每个规则的成员资格度量,然后计算每个规则的输出,并最终将所有规则的输出组合成单个输出。
阅读全文