根据以上代码出现以下报错'Pickup_Zone' is both an index level and a column label, which is ambiguous.
时间: 2024-03-27 16:35:28 浏览: 106
这个报错的原因是,代码中使用了`groupby`方法时,既指定了`Pickup_Zone`作为分组依据,又在`grouped_Travel_time`中使用了`Pickup_Zone`作为列名,这样就会导致出现歧义,从而触发报错。
要解决这个问题,可以尝试将`groupby`方法中的列名`Pickup_Zone`改成对应的索引名,即`Order_df['Pickup_Zone']`。修改后的代码如下所示:
```python
# 用于填充缺失值的均值计算函数
def fill_missing_mean(group):
mean = group.mean()
return group.fillna(mean)
# 构建多级索引
index = pd.MultiIndex.from_product([Order_df['Arrive_step'].unique(), Order_df['Pickup_Zone'].unique(), Order_df['Dropoff_Zone'].unique()], names=['Arrive_step', 'Pickup_Zone', 'Dropoff_Zone'])
# 按照多级索引分组并计算均值,然后用均值填充缺失值
grouped_Travel_time = Order_df.groupby(['Arrive_step', Order_df['Pickup_Zone'], 'Dropoff_Zone']).apply(fill_missing_mean).groupby(['Arrive_step', 'Pickup_Zone', 'Dropoff_Zone'])['Travel_time'].mean().reindex(index, fill_value=0)
```
这样修改之后,就可以解决报错了。
阅读全文