优化代码df1=df[df.name=='Ben'] df2=df[df.name=='Elizabeth'] df3=df[df.name=='John'] df4=df[df.name=='Smith'] df5=df[df.name=='Sherly']
时间: 2023-08-06 13:11:53 浏览: 159
可以使用 Pandas 中的 `groupby` 函数来实现这个操作,代码如下:
```
grouped = df.groupby('name')
df1 = grouped.get_group('Ben')
df2 = grouped.get_group('Elizabeth')
df3 = grouped.get_group('John')
df4 = grouped.get_group('Smith')
df5 = grouped.get_group('Sherly')
```
这样就可以将原来的 5 行代码简化为 3 行。同时,如果需要处理更多不同姓名的数据,也可以很方便地加入到 `grouped` 中。
相关问题
帮我写一个判断,if df1为空,df1=df2 ;else df1=df1.merge(df2)
好的,这是一个关于 Pandas DataFrame 的问题,我可以帮你回答。如果 df1 是一个空的 DataFrame,那么可以使用以下代码来将 df2 赋值给 df1:
```
if df1.empty:
df1 = df2
else:
df1 = df1.merge(df2)
```
这个判断语句的意思是,如果 df1 为空(即没有任何行或列),则将 df2 赋值给 df1;否则,将 df2 合并到 df1 中。希望这个回答对你有所帮助。还有什么问题吗?
labels=np.array(exercise2.满意度) datalenth=5 df1=np.array(exercise2.东部) df2=np.array(exercise2.中部) df3=np.array(exercise2.西部) angles=np.linspace(0,2*np.pi,datalenth,endpoint=False) df1=np.concatenate((df1,[df1[0]])) df2=np.concatenate((df2,[df2[0]])) df3=np.concatenate((df3,[df3[0]]))
这是一段 Python 代码,用于绘制雷达图。其中,labels 是一个包含标签的数组,datalenth 是数据的长度,df1、df2、df3 分别是三个地区的数据。通过 np.linspace 函数生成角度数组,然后将每个地区的数据首尾相连,最后使用 matplotlib 库绘制雷达图。
阅读全文