df1 = data[data.cluster==0] df2 = data[data.cluster==1] df3 = data[data.cluster==2] df4 = data[data.cluster==3] df5 = data[data.cluster==4] plt.scatter(df1.Returns,df1.Variance,color='green',label='cluster 0') plt.scatter(df2.Returns,df2.Variance,color='red',label='cluster 1') plt.scatter(df3.Returns,df3.Variance,color='black',label='cluster 2') plt.scatter(df4.Returns,df4.Variance,color='yellow',label='cluster 3') plt.scatter(df5.Returns,df5.Variance,color='yellow',label='cluster 4') plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',marker='*',label='centroid') plt.xlabel('Returns') plt.ylabel('Variance') plt.legend()解释一下
时间: 2024-01-30 08:02:15 浏览: 188
这段代码是对聚类结果进行可视化展示,首先通过筛选出每个聚类的数据子集,分别赋值给 df1~df5 这 5 个变量。然后,使用 matplotlib 库的 scatter() 方法,分别将每个聚类的数据点在二维坐标系中绘制出来。其中,每个聚类使用不同的颜色进行标识,如 cluster 0 使用绿色、cluster 1 使用红色、cluster 2 使用黑色、cluster 3 使用黄色、cluster 4 使用紫色。通过 scatter() 方法还绘制了每个聚类的质心 centroid,使用紫色星号进行标识。最后,通过 xlabel() 和 ylabel() 方法设置了坐标轴的标签,通过 legend() 方法添加了图例。这样,我们可以通过图像直观地观察到聚类结果,进而进行后续的分析和决策制定。
相关问题
df1 = data.query('fraud == 1') df2 = data.query('fraud == 0').sample(len(df1)) data = pd.concat([df1,df2],axis=0).reset_index(drop=True)
这段代码的作用是将原始数据集按照欺诈标记fraud进行分组,得到欺诈数据集df1和非欺诈数据集df2。然后从非欺诈数据集df2中随机抽取与欺诈数据集df1相同数量的样本,得到新的非欺诈数据集df2。最后将欺诈数据集df1和新的非欺诈数据集df2进行合并,得到新的数据集data,并重新设置索引。这个过程叫做欺诈数据集的下采样,目的是为了平衡欺诈和非欺诈数据的比例。
优化代码df1=df[df.name=='Ben'] df2=df[df.name=='Elizabeth'] df3=df[df.name=='John'] df4=df[df.name=='Smith'] df5=df[df.name=='Sherly']
可以使用 Pandas 中的 `groupby` 函数来实现这个操作,代码如下:
```
grouped = df.groupby('name')
df1 = grouped.get_group('Ben')
df2 = grouped.get_group('Elizabeth')
df3 = grouped.get_group('John')
df4 = grouped.get_group('Smith')
df5 = grouped.get_group('Sherly')
```
这样就可以将原来的 5 行代码简化为 3 行。同时,如果需要处理更多不同姓名的数据,也可以很方便地加入到 `grouped` 中。
阅读全文