system Verilog中 代码reg dat_en = 0; reg [3:0] dat_d ; reg [15:0] crc_cal [3:0]; initial begin for(int j = 0; j < 4; j++) crc_cal[j] <= 16'd0; end function automatic logic [15:0] CalcCrcDAT(input [15:0] crc, input inbit); return {crc[14:0],crc[15]^inbit} ^ {3'b0,crc[15]^inbit,6'b0,crc[15]^inbit,5'b0}; endfunction task cmd_53_wr_dat_gen; input [9:0] num; reg [7:0] wr_data; reg dat_part_select; integer k; begin /* @(negedge clk); for(int j = 0; j < 4; j++) crc_cal[j] <= 16'd0; */ @(negedge clk); dat_en <= 1'b1; dat_d <= 4'h0; wr_data<= 8'd1; dat_part_select <= 1'b0; for(int j = 0; j < 4; j++) crc_cal[j] <= CalcCrcDAT(crc_cal[j],1'b0); for (k=0;k<num * 2;k=k+1) begin @(negedge clk); dat_en <= 1'b1; dat_part_select <= ~dat_part_select; if(dat_part_select) begin dat_d <= wr_data[7:4]; for(int j = 0; j < 4; j++) crc_cal[j] <= CalcCrcDAT(crc_cal[j],wr_data[j+4]); end else begin dat_d <= wr_data[3:0]; wr_data <= wr_data + 1'b1; for(int j = 0; j < 4; j++) crc_cal[j] <= CalcCrcDAT(crc_cal[j],wr_data[j+4]); end end @(negedge clk); dat_en <= 1'b1; dat_d <= 4'hf; @(negedge clk); dat_en <= 1'b0; dat_d <= 4'hf; end endtask中为什么crc一直为为0

时间: 2024-03-22 18:39:49 浏览: 16
在这段代码中,`crc_cal` 是一个数组,并且在初始时,使用了如下代码将其所有元素初始化为 0: ``` initial begin for(int j = 0; j < 4; j++) crc_cal[j] <= 16'd0; end ``` 在 `cmd_53_wr_dat_gen` 的循环中,使用了 `CalcCrcDAT` 函数对 `crc_cal` 数组进行更新,因此在每次循环后,`crc_cal` 数组应该会被更新为新的值。 如果 `crc_cal` 数组一直为 0,那么可能是因为在循环中,没有正确调用 `CalcCrcDAT` 函数来更新数组的值。你可以检查一下代码中 `CalcCrcDAT` 函数的实现是否正确,并确保在循环中正确调用了该函数。此外,你也可以在代码中增加一些调试语句,例如打印出 `crc_cal` 数组的值,来帮助你定位问题所在。
相关问题

reg_data <= {reg_data[14:0], data_in[0]};

这是一个Verilog HDL语言中的代码片段,它用于实现一个16位移位寄存器中的右移操作。其中,reg_data是一个16位的寄存器变量,data_in是一个1位的输入变量。这段代码的作用是将reg_data中的数据从最高位开始向右移动一位,并将data_in的数据放置在最低位上。 具体地,{reg_data[14:0], data_in[0]}表示一个由15位组成的向量,其中15-1位为reg_data的14-0位,0位为data_in的0位。通过将这个向量赋值给reg_data,就实现了右移操作。移位后,原来的最高位数据被丢弃,最低位数据被填充为data_in的值。 需要注意的是,这段代码中的移位方式为逻辑右移,即在最高位填充0。如果需要进行算术右移,则需要在移位后重新设置最高位的值。

assign button_flag_en = (~flag_reg2) & flag_reg1; assign uart_flag = (~recv_done_d1) & recv_done_d0; assign motor_en = (digit == digit_set);

这是一些Verilog的代码片段,它们是用来实现硬件电路的。我可以为你解释这些代码的含义。 第一行代码 `assign button_flag_en = (~flag_reg2) & flag_reg1;` 中,`~`表示取反,`&`表示按位与运算。这行代码的含义是,如果`flag_reg1`的值为1,且`flag_reg2`的值为0,则`button_flag_en`的值为1,否则为0。 第二行代码 `assign uart_flag = (~recv_done_d1) & recv_done_d0;` 中,`~`表示取反,`&`表示按位与运算。这行代码的含义是,如果`recv_done_d0`的值为1,且`recv_done_d1`的值为0,则`uart_flag`的值为1,否则为0。 第三行代码 `assign motor_en = (digit == digit_set);` 中,`==`表示相等运算。这行代码的含义是,如果`digit`的值等于`digit_set`的值,则`motor_en`的值为1,否则为0。 这些代码片段看起来都是用来控制电路中的开关或者状态变量的。

相关推荐

//XW_crc_p.v pragma protect begin module DW_crc_p( data_in, crc_in, crc_ok, crc_out ); parameter integer data_width = 16; parameter integer poly_size = 16; parameter integer crc_cfg = 7; parameter integer bit_order = 3; parameter integer poly_coef0 = 4129; parameter integer poly_coef1 = 0; parameter integer poly_coef2 = 0; parameter integer poly_coef3 = 0; input [data_width-1:0] data_in; input [poly_size-1:0] crc_in; output crc_ok; output [poly_size-1:0] crc_out; define DW_max_data_crc_1 (data_width>poly_size?data_width:poly_size) wire [poly_size-1:0] crc_in_inv; wire [poly_size-1:0] crc_reg; wire [poly_size-1:0] crc_out_inv; wire [poly_size-1:0] crc_chk_crc_in; reg [poly_size-1:0] crc_inv_alt; reg [poly_size-1:0] crc_polynomial; include "bit_order_crc_function.inc" include "bit_order_data_function.inc" include "calculate_crc_w_in_function.inc" include "calculate_crc_function.inc" include "calculate_crc_crc_function.inc" generate //begin genvar bit_idx; reg [63:0] crc_polynomial64; reg [15:0] coef0; reg [15:0] coef1; reg [15:0] coef2; reg [15:0] coef3; assign coef0= poly_coef0; assign coef0= poly_coef1; assign coef0= poly_coef2; assign coef0= poly_coef3; assign crc_polynomial64 = {coef3, coef2, coef1, coef0}; assign crc_pollynomial = crc_polynomial64[poly_size-1:0]; case(crc_cfg/2) 0: assign crc_inv_alt = {poly_size{1'b0}}; 1: for(bit_idx = 0; bit_idx<poly_sizel bit_idx=bit_idx+1) assign crc_inv_alt[bit_idx] = (bit_idx % 2)? 1'b0:1'b1; 2: for(bit_idx=0; bit_idx<poly_size; bit_idx=bit_idx+1) assign crc_inv_alt[bit_idx] = (bit_idx % 2)?1'b1:1'b0; 3: assign crc_inv_alt = { poly_size{1'b1}}; endcase endgenerate assign crc_in_inv = bit_order_crc(crc_in) ^ crc_inv_alt; assign crc_reg = calculate_crc(bit_order_data(data_in)); assign crc_out_inv = crc_reg; assign crc_out = bit_order_crc(crc_out_inv)^ crc_inv_alt; assign crc_chk_crc_in = calculate_crc_crc(crc_reg, crc_in_inv); assign crc_ok = (crc_chk_crc_in ==0); undef DW_max_data_crc_1 endmodule pragma protect end can you write a testbench for this piece of CRC verilog code so that this verilog file and the testbench can be used togerther by vcs to verify the correctness of this verilog file?

最新推荐

recommend-type

verilog_代码编写软件UE_高亮

今天有用UE查看verilog程序,下载的UE是破解版的,打开后灰蒙蒙的一片,很不爽的,于是搜索一番,下面是一段用于verilog在UE中高亮显示的程序,可以用的。以备后用。
recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.