import numpy as np from math import * def Pnm(Phi, Degree): P = np.zeros([Degree + 2, Degree + 2]) # 跨阶次正规化勒让德系数 P[1][1] = 1 P[2][1] = sin(Phi) * 3 ** 0.5 P[2][2] = sqrt(3 * (1 - sin(Phi) ** 2)) for j in range(1, 3): for i in range(3, Degree + 2): l = i - 1 m = j - 1 a = sqrt((4 * l ** 2 - 1) / (l ** 2 - m ** 2)) b = sqrt((2 * l + 1) / (2 * l - 3)) * sqrt(((l - 1) ** 2 - m ** 2) / (l ** 2 - m ** 2)) P[i][j] = a * sin(Phi) * P[i - 1][j] - b * P[i - 2][j] for j in range(3, Degree + 1): for i in range(j, j + 2): l = i - 1 m = j - 1 if (m == 2): beta = sqrt(2 * (2 * l + 1) * (l + m - 2) * (l + m - 3) / (2 * l - 3) / (l + m) / (l + m - 1)) gama = sqrt(2 * (l - m + 1) * (l - m + 2) / (l + m) / (l + m - 1)) else: beta = sqrt((2 * l + 1) * (l + m - 2) * (l + m - 3) / (2 * l - 3) / (l + m) / (l + m - 1)) gama = sqrt((l - m + 1) * (l - m + 2) / (l + m) / (l + m - 1)) P[i][j] = beta * P[i - 2][j - 2] - gama * P[i][j - 2] if ((j + 2) < Degree + 2): for i in range(j + 2, Degree + 2): l = i - 1 m = j - 1 alpha = sqrt((2 * l + 1) * (l - m) * (l - m - 1) / (2 * l - 3) / (l + m) / (l + m - 1)) if (m == 2): beta = sqrt(2 * (2 * l + 1) * (l + m - 2) * (l + m - 3) / (2 * l - 3) / (l + m) / (l + m - 1)) gama = sqrt(2 * (l - m + 1) * (l - m + 2) / (l + m) / (l + m - 1)) else: beta = sqrt((2 * l + 1) * (l + m - 2) * (l + m - 3) / (2 * l - 3) / (l + m) / (l + m - 1)) gama = sqrt((l - m + 1) * (l - m + 2) / (l + m) / (l + m - 1)) P[i][j] = alpha * P[i - 2][j] + beta * P[i - 2][j - 2] - gama * P[i][j - 2] l = Degree m = Degree beta = sqrt((2 * l + 1) * (l + m - 2) * (l + m - 3) / (2 * l - 3) / (l + m) / (l + m - 1)) gama = sqrt((l - m + 1) * (l - m + 2) / (l + m) / (l + m - 1)) P[l + 1][m + 1] = beta * P[l + 1 - 2][m + 1 - 2] - gama * P[l + 1][m + 1 - 2] return P def P_final(theta, n, m, Degree=360): Phi = pi / 2 - theta res = Pnm(Phi, Degree) return res a = P_final(radians(58), 360, 360) print(a)

时间: 2023-02-15 19:32:20 浏览: 140
for n in range(Degree): for m in range(n, Degree): if n == m: P[n, m] = sqrt((2 - 1) / 2 * factorial(n) / (4 * pi * factorial(n))) * cos(m * Phi) else: P[n, m] = sqrt((2 * n + 1) / (2 * n * (n + 1)) *
相关问题

优化这段import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' def generate_signal(t_vec, A, phi, noise, freq): Omega = 2*np.pi*freq return A * np.sin(Omega*t_vec + phi) + noise * (2*np.random.random def lock_in_measurement(signal, t_vec, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*t_vec) ref_1 = 2*np.cos(Omega*t_vec) # signal_0 = signal * ref_0 signal_1 = signal * ref_1 # X = np.mean(signal_0) Y = np.mean(signal_1) # A = np.sqrt(X**2+Y**2) phi = np.arctan2(Y,X) print("A=", A, "phi=", phi) # t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 # signal = generate_signal(t_vec, A, phi, noise, ref_freq) # lock_in_measurement(signal, t_vec, ref_freq)

import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' def generate_signal(t_vec, A, phi, noise, freq): Omega = 2*np.pi*freq return A * np.sin(Omega*t_vec + phi) + noise * (2*np.random.random) def lock_in_measurement(signal, t_vec, ref_freq): Omega = 2*np.pi*ref_freq ref_0 = 2*np.sin(Omega*t_vec) ref_1 = 2*np.cos(Omega*t_vec) signal_0 = signal * ref_0 signal_1 = signal * ref_1 X = np.mean(signal_0) Y = np.mean(signal_1) A = np.sqrt(X**2+Y**2) phi = np.arctan2(Y,X) print("A=", A, "phi=", phi) t_vec = np.linspace(0, 0.2, 1001) A = 1 phi = np.pi noise = 0.2 ref_freq = 17.77777 signal = generate_signal(t_vec, A, phi, noise, ref_freq) lock_in_measurement(signal, t_vec, ref_freq)

优化这段pythonimport numpy as np import matplotlib.pyplot as plt import math # 待测信号 freq = 17.77777 # 信号频率 t = np.linspace(0, 0.2, 1001) Omega =2 * np.pi * freq phi = np.pi A=1 x = A * np.sin(Omega * t + phi) # 加入噪声 noise = 0.2 * np.random.randn(len(t)) x_noi

se = x + noise # 绘制原始信号和加噪声后的信号 plt.figure(figsize=(10, 4)) plt.plot(t, x, label='Original Signal') plt.plot(t, x_noise, label='Signal with Noise') plt.legend() plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.show() # 进行傅里叶变换 fft_x_noisese = np.fft.fft(x_noise) freqs = np.fft.fftfreq(len(x_noise)) # 绘制频谱图 plt.figure(figsize=(10, 4)) plt.plot(freqs, np.abs(fft_x_noisese)) plt.xlabel('Frequency (Hz)') plt.ylabel('Amplitude') plt.show() 优化建议: 1. 可以将一些常量提取出来,例如频率、噪声幅度等,避免在循环中重复计算。 2. 可以使用subplot函数将多张图放在同一张画布中展示,提高可视化效率。 3. 可以对频谱图进行对数变换,使其更容易观察信号的频域特征。 4. 可以对傅里叶变换结果进行归一化处理,使得频谱图的纵轴单位更易理解。
阅读全文

相关推荐

请在不影响结果的条件下改变代码的样子:import numpy as np import matplotlib.pyplot as plt x1len = 21 x2len = 18 LEN = x1len + x2len POPULATION_SIZE = 100 GENERATIONS = 251 CROSSOVER_RATE = 0.7 MUTATION_RATE = 0.3 pop = np.random.randint(0,2,size=(POPULATION_SIZE,LEN)) def BinToX(pop): x1 = pop[:,0:x1len] x2 = pop[:,x1len:] x1 = x1.dot(2**np.arange(x1len)[::-1]) x2 = x2.dot(2**np.arange(x2len)[::-1]) x1 = -2.9 + x1*(12 + 2.9)/(np.power(2,x1len)-1) x2 = 4.2 + x2*(5.7 - 4.2)/(np.power(2,x2len)-1) return x1,x2 def func(pop): x1,x2 = BinToX(pop) return 21.5 + x1*np.sin(4*np.pi*x1) + x2*np.sin(20*np.pi*x2) def fn(pop): return func(pop); def selection(pop, fitness): idx = np.random.choice(np.arange(pop.shape[0]), size=POPULATION_SIZE, replace=True, p=fitness/fitness.sum()) return pop[idx] def crossover(IdxP1,pop): if np.random.rand() < CROSSOVER_RATE: C = np.zeros((1,LEN)) IdxP2 = np.random.randint(0, POPULATION_SIZE) pt = np.random.randint(0, LEN) C[0,:pt] = pop[IdxP1,:pt] C[0,pt:] = pop[IdxP2, pt:] np.append(pop, C, axis=0) return def mutation(idx,pop): if np.random.rand() < MUTATION_RATE: mut_index = np.random.randint(0, LEN) pop[idx,mut_index] = 1- pop[idx,mut_index] return best_chrom = np.zeros(LEN) best_score = 0 fig = plt.figure() for generation in range(GENERATIONS): fitness = fn(pop) pop = selection(pop, fitness) if generation%50 == 0: ax = fig.add_subplot(2,3,generation//50 +1, projection='3d', title = "generation:"+str(generation)+" best="+str(np.max(fitness))) x1,x2 = BinToX(pop) z = func(pop) ax.scatter(x1,x2,z) for idx in range(POPULATION_SIZE): crossover(idx,pop) mutation(idx,pop) idx = np.argmax(fitness) if best_score < fitness[idx]: best_score = fitness[idx] best_chrom = pop[idx, :] plt.show() print('最优解:', best_chrom, '| best score: %.2f' % best_score)

最新推荐

recommend-type

Python Numpy:找到list中的np.nan值方法

import numpy as np x = np.array([2, 3, np.nan, 5, np.nan, 5, 2, 3]) # 简单查找np.nan值 for item in x: if np.isnan(item): print('yes') ``` 在这个例子中,`np.isnan(item)`函数被用来遍历数组`x`的每个...
recommend-type

numpy:np.newaxis 实现将行向量转换成列向量

在Python的科学计算库NumPy中,`np.newaxis`是一个非常有用的工具,它允许你在数组操作中添加新的维度。在处理多维数据时,尤其是在进行矩阵运算时,`np.newaxis`可以帮助我们将一维的行向量转换为二维的列向量,这...
recommend-type

图像去雾基于基于Matlab界面的(多方法对比,PSNR,信息熵,GUI界面).rar

MATLAB设计
recommend-type

c语言打字母游戏源码.zip

c语言打字母游戏源码
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依