Matlab实现tsp遗传算法
时间: 2023-10-22 18:04:24 浏览: 80
matlab_遗传算法在tsp中的应用
遗传算法是一种优化算法,它可以用于解决旅行商问题(TSP)。下面是使用Matlab实现tsp遗传算法的步骤:
1. 定义城市坐标:首先,需要定义每个城市的坐标。可以通过随机生成城市坐标或者手动定义坐标。
2. 计算距离矩阵:计算每两个城市之间的距离。可以使用欧几里得距离公式进行计算。
3. 初始化种群:随机生成初始种群。每个个体代表一条旅行路线,即一组城市的排列序列。
4. 评估适应度:根据每个个体的旅行路线,计算其总路程长度。路程长度越短,个体的适应度越高。
5. 选择操作:使用轮盘赌选择算法从种群中选择优秀个体。
6. 交叉操作:对选择出的个体进行交叉操作,生成新的个体。
7. 变异操作:对新生成的个体进行变异操作,增加种群的多样性。
8. 评估适应度:计算新个体的适应度。
9. 更新种群:将新个体加入到种群中,更新种群。
10. 判断终止条件:重复以上操作直至满足终止条件,例如达到最大迭代次数或者收敛。
下面是一份示例代码:
```matlab
% 定义城市坐标
numCities = 20;
mapWidth = 100;
mapHeight = 100;
cityLocations = [randi(mapWidth,1,numCities);randi(mapHeight,1,numCities)];
% 计算距离矩阵
distMatrix = zeros(numCities);
for i = 1:numCities
for j = i+1:numCities
distance = sqrt((cityLocations(1,i)-cityLocations(1,j))^2 + (cityLocations(2,i)-cityLocations(2,j))^2);
distMatrix(i,j) = distance;
distMatrix(j,i) = distance;
end
end
% 初始化种群
popSize = 50;
pop = zeros(popSize,numCities);
for i = 1:popSize
pop(i,:) = randperm(numCities);
end
% 定义参数
numIterations = 1000;
mutationRate = 0.01;
% 迭代
for iter = 1:numIterations
% 评估适应度
fitness = zeros(popSize,1);
for i = 1:popSize
route = pop(i,:);
routeDist = 0;
for j = 1:numCities-1
currentCity = route(j);
nextCity = route(j+1);
routeDist = routeDist + distMatrix(currentCity,nextCity);
end
fitness(i) = 1/routeDist;
end
% 选择操作
selectProb = fitness./sum(fitness);
selectIndex = roulletteWheelSelection(selectProb);
selectPop = pop(selectIndex,:);
% 交叉操作
crossIndex = randperm(popSize,2);
crossRoute1 = selectPop(crossIndex(1),:);
crossRoute2 = selectPop(crossIndex(2),:);
crossPoint1 = randi(numCities);
crossPoint2 = randi(numCities);
if crossPoint1 > crossPoint2
temp = crossPoint1;
crossPoint1 = crossPoint2;
crossPoint2 = temp;
end
childRoute = crossRoute1;
for j = crossPoint1:crossPoint2
city = crossRoute2(j);
if ~ismember(city,childRoute)
index = find(childRoute==crossRoute1(j));
childRoute(index) = city;
end
end
% 变异操作
mutIndex = randi(popSize);
mutRoute = pop(mutIndex,:);
for j = 1:numCities
if rand() < mutationRate
swapIndex = randi(numCities);
temp = mutRoute(j);
mutRoute(j) = mutRoute(swapIndex);
mutRoute(swapIndex) = temp;
end
end
% 更新种群
pop = [pop;childRoute;mutRoute];
fitness = zeros(popSize*3,1);
for i = 1:popSize*3
route = pop(i,:);
routeDist = 0;
for j = 1:numCities-1
currentCity = route(j);
nextCity = route(j+1);
routeDist = routeDist + distMatrix(currentCity,nextCity);
end
fitness(i) = 1/routeDist;
end
[~,sortIndex] = sort(fitness,'descend');
pop = pop(sortIndex(1:popSize),:);
end
% 显示最佳路线
bestRoute = pop(1,:);
figure;
plot(cityLocations(1,bestRoute),cityLocations(2,bestRoute),'-o','MarkerSize',10);
title(sprintf('Shortest path length: %f',1/fitness(1)));
```
在这个示例代码中,我们使用了轮盘赌选择算法、单点交叉和随机交换变异。你可以根据需要调整参数和算法操作以获得更好的结果。
阅读全文