贝叶斯模型python代码
时间: 2023-07-23 20:23:16 浏览: 86
下面是一个简单的贝叶斯分类器的 Python 代码示例:
```python
import numpy as np
class NaiveBayes:
def fit(self, X, y):
n_samples, n_features = X.shape
self._classes = np.unique(y)
n_classes = len(self._classes)
self._mean = np.zeros((n_classes, n_features), dtype=np.float64)
self._var = np.zeros((n_classes, n_features), dtype=np.float64)
self._priors = np.zeros(n_classes, dtype=np.float64)
for c in self._classes:
X_c = X[c == y]
self._mean[c, :] = X_c.mean(axis=0)
self._var[c, :] = X_c.var(axis=0)
self._priors[c] = X_c.shape[0] / float(n_samples)
def predict(self, X):
y_pred = [self._predict(x) for x in X]
return np.array(y_pred)
def _predict(self, x):
posteriors = []
for idx, c in enumerate(self._classes):
prior = np.log(self._priors[idx])
class_conditional = np.sum(np.log(self._pdf(idx, x)))
posterior = prior + class_conditional
posteriors.append(posterior)
return self._classes[np.argmax(posteriors)]
def _pdf(self, class_idx, x):
mean = self._mean[class_idx]
var = self._var[class_idx]
numerator = np.exp(-(x - mean)**2 / (2 * var))
denominator = np.sqrt(2 * np.pi * var)
return numerator / denominator
```
使用示例:
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
nb = NaiveBayes()
nb.fit(X_train, y_train)
y_pred = nb.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
阅读全文