cv2.DescriptorMatcher_create()描述符BruteForce-L1的写法
时间: 2024-06-06 17:11:47 浏览: 310
这是一个Python中OpenCV库中用于创建DescriptorMatcher的函数。它创建一个BruteForce-L1型描述符匹配器。您可以通过以下方式使用它:
import cv2
matcher = cv2.DescriptorMatcher_create(cv2.DescriptorMatcher_BRUTEFORCE_L1)
其中,matcher是您所建立的描述符匹配器。
相关问题
cv2.DescriptorMatcher_create()函数,创建欧式距离匹配器的代码
以下是使用cv2.DescriptorMatcher_create()函数创建欧式距离匹配器的代码:
```
import cv2
# 创建SIFT特征提取器和描述符
sift = cv2.xfeatures2d.SIFT_create()
# 读取图片并提取特征
img1 = cv2.imread('img1.jpg')
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
kp1, des1 = sift.detectAndCompute(gray1, None)
img2 = cv2.imread('img2.jpg')
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
kp2, des2 = sift.detectAndCompute(gray2, None)
# 创建欧式距离匹配器
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE)
# 匹配特征
matches = matcher.match(des1, des2)
# 绘制匹配结果
img_matches = cv2.drawMatches(img1, kp1, img2, kp2, matches, None)
cv2.imshow("Matches", img_matches)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在上面的代码中,我们首先使用SIFT特征提取器和描述符提取了两张图片的特征。然后,我们使用cv2.DescriptorMatcher_create()函数创建了一个欧式距离匹配器,这里我们使用了cv2.DESCRIPTOR_MATCHER_BRUTEFORCE参数来指定使用暴力匹配器。接着,我们使用matcher.match()函数对两张图片的描述符进行匹配,并将匹配结果绘制出来。最后,我们使用cv2.imshow()函数显示匹配结果,并使用cv2.waitKey()函数等待用户按下键盘任意键,最后使用cv2.destroyAllWindows()函数关闭所有窗口。
import cv2 import numpy as np # 读取两幅图像 img1 = cv2.imread('D:\wzk\JIEMIAN\images\er_duibidu.jpg') img2 = cv2.imread('D:\wzk\JIEMIAN\images\yi_duibidu.jpg') # 将两幅图像转换为灰度图像 gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # 提取图像特征点 orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(gray1, None) kp2, des2 = orb.detectAndCompute(gray2, None) # 匹配特征点 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(des1, des2) # 选择最佳匹配点 matches = sorted(matches, key=lambda x: x.distance) good_matches = matches[:int(len(matches)*0.15)] # 绘制特征点连接图 img3 = cv2.drawMatches(img1, kp1, img2, kp2, good_matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) # 计算变换矩阵 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 拼接图像 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 保存连接图 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pz.jpg', img3) # 保存第二幅图像 cv2.imwrite('D:\wzk\JIEMIAN\Result\ORB-pj.jpg', result) # 显示结果 cv2.namedWindow("Keypoint Matches", cv2.WINDOW_NORMAL) cv2.imshow("Keypoint Matches", img3) cv2.namedWindow("Result",cv2.WINDOW_NORMAL) cv2.imshow('Result', result) cv2.waitKey(0) cv2.destroyAllWindows()改进为对文件夹内的多幅图像进行配准拼接
可以使用循环遍历文件夹内的所有图像,对每幅图像进行配准拼接,最终将所有拼接结果合并成一张大图像。
以下是示例代码:
```
import cv2
import numpy as np
import os
# 定义文件夹路径和结果保存路径
folder_path = 'D:\wzk\JIEMIAN\images'
result_path = 'D:\wzk\JIEMIAN\Result\ORB-pj.jpg'
# 获取文件夹内所有图像路径
img_paths = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.jpg')]
# 遍历所有图像,进行配准拼接
result = cv2.imread(img_paths[0])
for i in range(1, len(img_paths)):
img = cv2.imread(img_paths[i])
# 将两幅图像转换为灰度图像
gray1 = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 提取图像特征点
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(gray1, None)
kp2, des2 = orb.detectAndCompute(gray2, None)
# 匹配特征点
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(des1, des2)
# 选择最佳匹配点
matches = sorted(matches, key=lambda x: x.distance)
good_matches = matches[:int(len(matches)*0.15)]
# 计算变换矩阵
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 拼接图像
result = cv2.warpPerspective(result, M, (result.shape[1] + img.shape[1], result.shape[0]))
result[0:img.shape[0], result.shape[1]-img.shape[1]:] = img
# 保存拼接结果
cv2.imwrite(result_path, result)
# 显示结果
cv2.namedWindow("Result",cv2.WINDOW_NORMAL)
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
代码中使用了 `os` 模块来遍历文件夹内所有图像的路径,然后对每幅图像进行配准拼接。最终将所有拼接结果合并成一张大图像,并保存到指定路径。
阅读全文