用python实现根据密度选取K-means质心
时间: 2023-05-23 17:06:36 浏览: 79
A:实现根据密度选取K-means质心的算法通常被称为密度聚类(DBSCAN算法)。以下是使用Python实现此算法的示例代码:
```python
from sklearn.cluster import DBSCAN
import numpy as np
def select_kmeans_centers(X, eps, min_samples):
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
dbscan.fit(X)
core_samples_mask = np.zeros_like(dbscan.labels_, dtype=bool)
core_samples_mask[dbscan.core_sample_indices_] = True
labels = dbscan.labels_
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
unique_labels = set(labels)
centers = []
for k in unique_labels:
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
centers.append(np.mean(xy, axis=0))
return np.array(centers)
```
上述代码使用Scikit-learn库的DBSCAN实现了密度聚类算法。给定数据集X、半径eps和最小密度样本数min_samples,该函数返回根据密度选取的K-means质心。
阅读全文