用python代码展示如何实现使用Solo分割预训练模型实现电脑摄像头实时分割
时间: 2024-05-04 20:15:57 浏览: 95
以下是使用Solo分割预训练模型实现电脑摄像头实时分割的 Python 代码示例:
```
import cv2
import torch
import numpy as np
from torchvision import transforms
from solo import models
# Load the model
model = models.get('v1_r50-d8')['model']
checkpoint = torch.load('/path/to/checkpoint.pth', map_location='cpu')
model.load_state_dict(checkpoint['state_dict'])
model.eval()
# Define the transformation to be applied to the input image
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Initialize the video capture object to read from the default camera
cap = cv2.VideoCapture(0)
while True:
# Read a frame from the camera
ret, image = cap.read()
# Convert the image to RGB and apply the transformation
image_rbg = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_tensor = transform(image_rbg)
# Add a batch dimension and pass the tensor to the model
input_tensor = image_tensor.unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)[0]
# Convert the output tensor to a numpy array and resize it to match the input image size
output_array = output.cpu().numpy()
output_array = np.argmax(output_array, axis=0).astype(np.uint8)
output_array = cv2.resize(output_array, (image.shape[1], image.shape[0]))
# Apply the segmentation mask to the input image and display it
masked_image = cv2.bitwise_and(image, image, mask=output_array)
cv2.imshow('Segmentation Mask', masked_image)
# Exit the loop if the user press the 'q' key
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the resources and close the window
cap.release()
cv2.destroyAllWindows()
```
在上述代码中,我们首先导入必要的库和模块,然后加载预训练的 Solo 分割模型并定义要应用于输入图像的转换。接下来,我们初始化视频捕获对象以从默认相机读取帧,然后一直循环读取和处理每个帧,直到用户按下 'q' 键退出程序。对于每个帧,我们将其转换为 RGB 空间并应用转换,然后将其传递给 Solo 分割模型以获取输出分割结果。最后,我们将分割结果与输入图像的掩模相乘得到分割图像,并将其显示在窗口中。
阅读全文