class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=4): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) # 利用1x1卷积代替全连接 self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x)
时间: 2023-12-21 15:04:37 浏览: 145
这段代码定义了两个 PyTorch 模块:通道注意力模块(ChannelAttention)和空间注意力模块(SpatialAttention)。这两个模块都是用来增强卷积神经网络的表达能力的。
通道注意力模块的输入是一个四维张量 x,其形状为 [batch_size, in_planes, height, width],其中 in_planes 是输入特征图的通道数。在该模块中,首先对输入特征图进行了平均池化和最大池化操作,然后将两个池化结果分别经过一个 1x1 卷积层和激活函数,并将它们相加得到最终的特征图。最后,通过一个 sigmoid 激活函数将特征图的像素值归一化到 [0,1] 范围内。
空间注意力模块的输入也是一个四维张量 x,其形状与通道注意力模块相同。在该模块中,通过对输入特征图进行平均池化和最大池化操作,并将两个池化结果拼接在一起,得到了一个二通道的特征图。然后,将该特征图经过一个卷积层和 sigmoid 激活函数,得到一个 [0,1] 范围内的权重图。最后,将输入特征图与权重图相乘,得到了加强了空间细节的特征图。
这两个模块可以组合起来使用,以增强卷积神经网络的表达能力。
相关问题
class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio = 4): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out)
这段代码是一个基于通道注意力机制的PyTorch模块。通道注意力机制是一种用于增强卷积神经网络性能的技术,通过学习每个通道的重要性来提高特征图的质量。在这个模块中,输入x是一个四维的张量,表示的是一个批次的图像数据。模块首先将输入通过平均池化和最大池化分别进行特征提取,然后通过两个卷积层进行特征变换,最后将变换后的结果相加并通过sigmoid激活函数输出。这个模块可以被应用在任何的卷积神经网络中,用于提升模型的性能。
class EnhancedResidual(nn.Module): def __init__(self,in_c,out_c,fm_sz,net_type = 'ta'): super(EnhancedResidual,self).__init__() self.net_type = net_type self.conv1 = nn.Sequential( nn.Conv2d(in_channels = in_c,out_channels = in_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(in_c), nn.ReLU(), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 3,padding = 1), nn.BatchNorm2d(out_c), nn.ReLU(), ) self.botneck = nn.Conv2d(in_channels = in_c,out_channels = out_c,kernel_size = 1) self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2) if net_type == 'ta': self.spa = SpatialAttention() self.ca = ChannelAttention(in_planes = in_c,ratio = in_c) self.sa = MultiHeadSelfAttention(in_c = in_c,out_c = in_c // 4,head_n = 4,fm_sz = fm_sz) elif net_type == 'sa': self.sa = MultiHeadSelfAttention(in_c = in_c,out_c = out_c // 4,head_n = 4,fm_sz = fm_sz) elif net_type == 'cbam': self.spa = SpatialAttention() self.ca = ChannelAttention(in_planes = in_c,ratio = in_c) 改写为tensorflow形式
把上述PyTorch代码转换成TensorFlow代码如下:
```python
import tensorflow as tf
class EnhancedResidual(tf.keras.layers.Layer):
def __init__(self, in_c, out_c, fm_sz, net_type='ta'):
super(EnhancedResidual, self).__init__()
self.net_type = net_type
self.conv1 = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=in_c, kernel_size=3, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.ReLU()
])
self.conv2 = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=out_c, kernel_size=3, padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.ReLU()
])
self.botneck = tf.keras.layers.Conv2D(filters=out_c, kernel_size=1)
self.pool = tf.keras.layers.MaxPool2D(pool_size=2, strides=2)
if net_type == 'ta':
self.spa = SpatialAttention() # 需要自行定义SpatialAttention类
self.ca = ChannelAttention(in_planes=in_c, ratio=in_c) # 需要自行定义ChannelAttention类
self.sa = MultiHeadSelfAttention(in_c=in_c, out_c=in_c // 4, head_n=4, fm_sz=fm_sz) # 需要自行定义MultiHeadSelfAttention类
elif net_type == 'sa':
self.sa = MultiHeadSelfAttention(in_c=in_c, out_c=out_c // 4, head_n=4, fm_sz=fm_sz) # 需要自行定义MultiHeadSelfAttention类
elif net_type == 'cbam':
self.spa = SpatialAttention() # 需要自行定义SpatialAttention类
self.ca = ChannelAttention(in_planes=in_c, ratio=in_c) # 需要自行定义ChannelAttention类
def call(self, inputs):
x = self.conv1(inputs)
x = self.conv2(x)
shortcut = self.botneck(inputs)
x += shortcut
x = self.pool(x)
if self.net_type == 'ta':
x = self.spa(x) * x
x = self.ca(x) * x
x = self.sa(x) + x
elif self.net_type == 'sa':
x = self.sa(x) + x
elif self.net_type == 'cbam':
x = self.spa(x) * x
x = self.ca(x) * x
return x
```
需要注意的是,这里用到了一些自定义的类,如SpatialAttention、ChannelAttention和MultiHeadSelfAttention,需要根据具体情况自行实现。
阅读全文