帮我简写Direct minimization of the classification loss may lead to overfitting. To avoid this, prototype loss is added as regularization to improve the model's generalization ability. The so-called prototype loss, that is, center loss centered on the centroid of the subclasses, is used to determine the class to which the input x belongs to. Then, its decision boundary is the location where the distances to the centers of the subclasses of two adjacent classes are equal.
时间: 2023-06-13 11:06:39 浏览: 158
Directly minimizing classification loss may cause overfitting. To prevent this, prototype loss is added as regularization to enhance model generalization. Prototype loss, also known as center loss, is used to determine the input x's class based on the centroid of its subclasses. The decision boundary is located where the distances to the centers of adjacent subclasses are equal.
相关问题
Abstract— Image nonlocal self-similarity (NSS) property has been widely exploited via various sparsity models such as joint sparsity (JS) and group sparse coding (GSC). However, the existing NSS-based sparsity models are either too restrictive, e.g., JS enforces the sparse codes to share the same support, or too general, e.g., GSC imposes only plain sparsity on the group coefficients, which limit their effectiveness for modeling real images. In this paper, we propose a novel NSS-based sparsity model, namely, low-rank regularized group sparse coding (LR-GSC), to bridge the gap between the popular GSC and JS. The proposed LR-GSC model simultaneously exploits the sparsity and low-rankness of the dictionary-domain coefficients for each group of similar patches. An alternating minimization with an adaptive adjusted parameter strategy is developed to solve the proposed optimization problem for different image restoration tasks, including image denoising, image deblocking, image inpainting, and image compressive sensing. Extensive experimental results demonstrate that the proposed LR-GSC algorithm outperforms many popular or state-of-the-art methods in terms of objective and perceptual metrics.翻译
摘要—图像的非局部自相似性(NSS)属性已经被广泛应用于各种稀疏模型中,例如联合稀疏(JS)和群组稀疏编码(GSC)。然而,现有的基于NSS的稀疏模型要么太过严格,例如JS强制使稀疏编码共享相同的支持,要么太过通用,例如GSC仅对群组系数施加简单的稀疏性,这限制了它们对实际图像建模的有效性。本文提出了一种新的NSS-based稀疏模型,即低秩正则化群组稀疏编码(LR-GSC),以弥合流行的GSC和JS之间的差距。所提出的LR-GSC模型同时利用了每组相似补丁的字典域系数的稀疏性和低秩性。开发了一种带有自适应调整参数策略的交替最小化方法,用于解决不同的图像恢复任务,包括图像去噪、图像去块、图像修复和图像压缩感知。广泛的实验结果表明,所提出的LR-GSC算法在客观和感知度量方面优于许多流行或最先进的方法。
; LINES STARTING WITH ';' ARE COMMENTS title = Minimization ; Title of run ; Parameters describing what to do, when to stop and what to save integrator = steep ; Algorithm (steep = steepest descent minimization) emtol = 1000.0 ; Stop minimization when the maximum force < 10.0 kJ/mol emstep = 0.01 ; Energy step size nsteps = 50000 ; Maximum number of (minimization) steps to perform ; Parameters describing how to find the neighbors of each atom and how to calculate the interactions nstlist = 1 ; Frequency to update the neighbor list and long range forces cutoff-scheme = Verlet ns_type = grid ; Method to determine neighbor list (simple, grid) rlist = 1.2 ; Cut-off for making neighbor list (short range forces) coulombtype = PME ; Treatment of long range electrostatic interactions rcoulomb = 1.2 ; long range electrostatic cut-off vdwtype = cutoff vdw-modifier = force-switch rvdw-switch = 1.0 rvdw = 1.2 ; long range Van der Waals cut-off pbc = xyz ; Periodic Boundary Conditions DispCorr = no
<think>好的,我现在需要处理用户关于GROMACS能量最小化参数的提问。首先,用户提到了几个关键词:steep、integrator、coulomb、pme、vdw、cutoff。我的任务是为这些参数提供详细解释,并指导如何正确配置它们。
首先,我需要回忆GROMACS中能量最小化的基本概念。能量最小化是分子动力学模拟前的必要步骤,目的是消除初始结构中的不合理接触,使系统达到势能面上的局部最小值。如果跳过这一步,直接进行动力学模拟可能导致系统崩溃。
接下来,用户提到的参数需要逐一分析:
1. **integrator(积分器类型)**:在能量最小化中,常用的方法是steepest descent(最陡下降法)。可能还有l-bfgs等其他方法。需要解释不同积分器的适用场景和优缺点。
2. **steep参数**:可能涉及步长(step size)、最大步数(nsteps)、收敛容差(emtol)等。需要说明这些参数如何影响收敛速度和稳定性。
3. **coulomb和vdw(库仑和范德华相互作用处理方式)**:这里可能涉及到截断方法(cutoff)、PME(粒子网格埃瓦尔德)等。需要解释不同方法的区别,比如PME适用于周期性系统,而cutoff可能用于非周期性或节省计算资源的情况。
4. **cutoff(截断半径)**:库仑和范德华力的截断距离,需要说明合理设置的重要性,过小会导致精度问题,过大会增加计算量。
5. **pme(粒子网格埃瓦尔德)**:需要解释PME的原理,以及何时应该使用它。例如,在处理长程库仑力时,PME比简单截断更精确,但计算开销更大。
在组织回答时,需要结构清晰,分点解释每个参数的作用、推荐值及设置依据。同时,结合用户提供的引用[^1],可能需要提到进阶教程中关于结合自由能计算的相关内容,但注意用户的问题集中在能量最小化参数,所以引用要自然,比如在提到应用场景时。
然后,生成的相关问题需要围绕能量最小化的参数调整、常见错误、收敛判断等,确保问题对用户有进一步帮助。
需要检查LaTeX格式是否正确,所有数学公式用$...$或$$...$$包裹。例如,提到截断半径时,可以用$r_{\text{cut}}$表示。同时,确保使用中文回答,避免技术术语翻译错误。
最后,验证信息的准确性,比如steepest descent的默认步长是否为0.01 nm,emtol的推荐值是否为100-1000 kJ/mol/nm。可能需要查阅GROMACS手册或权威资料确认这些数值,确保回答真实可靠。</think>### GROMACS能量最小化参数详解
在GROMACS中,能量最小化(Energy Minimization)是消除初始结构不合理接触、避免模拟崩溃的关键步骤。以下是对关键参数的详细说明:
#### 1. **integrator(积分器类型)**
- **最陡下降法(steep)**:默认方法,通过沿势能梯度方向移动原子坐标降低能量。公式为:
$$ x_{n+1} = x_n - \alpha \nabla U(x_n) $$
其中$\alpha$为步长。适用于初始能量较高的情况,但收敛速度较慢。
- **L-BFGS法**:拟牛顿法,通过近似Hessian矩阵加速收敛,适合接近能量极小值的系统。
#### 2. **steep参数设置**
- **emtol**:能量收敛容差(默认值1000 kJ/mol/nm)。当最大力小于此值时停止优化,例如设置`emtol = 500`。
- **nsteps**:最大迭代步数(默认值1000),若未收敛则报错。
- **stepsize**:初始步长(默认0.01 nm),过大会导致震荡,过小降低效率。
#### 3. **非键相互作用处理**
- **coulombtype**:库仑力计算方式
- **cutoff**:直接截断,适用于非周期性系统。
- **PME**(Particle Mesh Ewald):周期性系统中精确计算长程库仑力,需设置`fourierspacing`(网格间距)和`pme-order`(插值阶数)[^1]。
- **vdwtype**:范德华力截断方式,通常选择`cutoff`。
- **rcoulomb**与**rvdw**:库仑和范德华力的截断半径(默认1.0-1.4 nm)。例如:
```bash
rcoulomb = 1.2
rvdw = 1.2
```
#### 4. **配置文件示例
```bash
integrator = steep ; 最陡下降法
emtol = 500 ; 收敛容差 (kJ/mol/nm)
nsteps = 2000 ; 最大步数
coulombtype = PME ; 周期性系统使用PME
vdwtype = cutoff
rcoulomb = 1.2 ; 单位:nm
rvdw = 1.2
```
#### 5. **常见问题与调试**
- **不收敛**:检查初始结构是否合理,或增大`nsteps`、调整`stepsize`。
- **能量震荡**:减小`stepsize`(如0.002 nm)。
- **PME报错**:确保`fourierspacing`与模拟盒尺寸兼容。
阅读全文
相关推荐










