output = (img * 255).clamp(0, 255).permute(1, 2, 0).to(torch.uint8).numpy()这句代码什么意思
时间: 2024-06-06 15:09:09 浏览: 150
这句代码的意思是将一个图像(img)从 tensor 格式转换为 numpy 数组格式,并将像素值乘以 255,然后将像素值限制在 0 和 255 之间,再将维度从 (C, H, W) 转换为 (H, W, C),最后将数据类型转换为 uint8。具体来说:
- `(img * 255)` 将像素值乘以 255。
- `.clamp(0, 255)` 将像素值限制在 0 和 255 之间。
- `.permute(1, 2, 0)` 将维度从 (C, H, W) 转换为 (H, W, C)。
- `.to(torch.uint8)` 将数据类型转换为 uint8。
- `.numpy()` 将 tensor 转换为 numpy 数组。
相关问题
class AAMsoftmax(nn.Module): def __init__(self, n_class, m, s): super(AAMsoftmax, self).__init__() self.m = m self.s = s self.weight = torch.nn.Parameter(torch.FloatTensor(n_class, 256), requires_grad=True) self.ce = nn.CrossEntropyLoss() nn.init.xavier_normal_(self.weight, gain=1) self.cos_m = math.cos(self.m) self.sin_m = math.sin(self.m) self.th = math.cos(math.pi - self.m) self.mm = math.sin(math.pi - self.m) * self.m def forward(self, x, label=None): cosine = F.linear(F.normalize(x), F.normalize(self.weight)) sine = torch.sqrt((1.0 - torch.mul(cosine, cosine)).clamp(0, 1)) phi = cosine * self.cos_m - sine * self.sin_m phi = torch.where((cosine - self.th) > 0, phi, cosine - self.mm) one_hot = torch.zeros_like(cosine) one_hot.scatter_(1, label.view(-1, 1), 1) output = (one_hot * phi) + ((1.0 - one_hot) * cosine) output = output * self.s loss = self.ce(output, label) prec1 = accuracy(output.detach(), label.detach(), topk=(1,))[0]
这段代码是一个 PyTorch 的模型实现,实现了一个 AAMsoftmax 的分类器。这个分类器的输入是一个 x 矩阵,代表输入的特征,label 是一个张量,代表输入的标签。该模型的 forward 函数中,首先对输入的特征 x 进行归一化,然后通过线性变换将 x 投影到一个维度为 256 的空间中,得到一个 cosine 矩阵。接下来通过一系列的数学计算,将 cosine 转化为一个 phi 矩阵,使得在 phi 矩阵上的分类间的 margin 更大,以提高分类的精度。最后,将 phi 矩阵和原始的 cosine 矩阵加权相加,得到最终的输出。同时,计算交叉熵损失和精度,并返回。
delta = pgd_attack(model, images, torch.tensor([0]), epsilon=0.031, alpha=0.008, num_iter=40) X_adv = (images + delta).clamp(0, 1) # Save adversarial image adv_img = X_adv.squeeze(0).detach().numpy().transpose((1, 2, 0)) adv_img = (adv_img * 0.5 + 0.5) * 255 adv_img = adv_img.astype('uint8')什么意思
这段代码实现了一个基于 Projected Gradient Descent (PGD) 的对抗样本生成攻击,并将生成的对抗样本保存在变量 `adv_img` 中。
具体来说,`pgd_attack` 函数对模型 `model` 进行了 `num_iter` 轮迭代,每次迭代都计算了损失函数关于输入图像的梯度,并以学习率 `alpha` 的大小更新输入图像的像素值,同时限制像素值的范围在 `[0, 1]` 的区间内。这样就可以生成一个最大化损失函数的对抗样本 `delta`。
接下来,将对抗样本添加到原始图像上,并将像素值截断到 `[0, 1]` 区间内,得到生成的对抗样本 `X_adv`。然后根据 `adv_img` 的维度和数据类型,将其转换为 NumPy 数组,并进行适当的缩放和类型转换,最后将其保存在 `adv_img` 变量中。
需要注意的是,这里对像素值进行了归一化和反归一化的操作。在添加对抗扰动时,使用了一个比较小的扰动幅度 `epsilon`,以限制对抗样本与原始样本之间的差异。在反归一化时,使用了一个缩放因子 `0.5` 和一个偏移量 `0.5`,将像素值从 `[-1, 1]` 的区间映射到 `[0, 255]` 的区间,以便于将其保存为图像文件。
阅读全文